2 resultados para Virus Physiological Processes
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Harmful algal blooms of Alexandrium spp. dinoflagellates regularly occur in French coastal waters contaminating shellfish. Studies have demonstrated that toxic Alexandrium spp. disrupt behavioural and physiological processes in marine filter-feeders, but molecular modifications triggered by phycotoxins are less well understood. This study analyzed the mRNA levels of 7 genes encoding antioxidant/detoxifying enzymes in gills of Pacific oysters (Crassostrea gigas) exposed to a cultured, toxic strain of A. minutum, a producer of paralytic shellfish toxins (PST) or fed Tisochrysis lutea (T. lutea, formerly Isochrysis sp., clone Tahitian (T. iso)), a non-toxic control diet, in four repeated experiments. Transcript levels of sigma-class glutathione S-transferase (GST), glutathione reductase (GR) and ferritin (Fer) were significantly higher in oysters exposed to A. minutum compared to oysters fed T. lutea. The detoxification pathway based upon glutathione (GSH)-conjugation of toxic compounds (phase II) is likely activated, and catalyzed by GST. This system appeared to be activated in gills probably for the detoxification of PST and/or extra-cellular compounds, produced by A. minutum. GST, GR and Fer can also contribute to antioxidant functions to prevent cellular damage from increased reactive oxygen species (ROS) originating either from A. minutum cells directly, from oyster hemocytes during immune response, or from other gill cells as by-products of detoxification.
Resumo:
European sea bass, Dicentrarchus labrax, is a highly valuable species in Europe, both for aquaculture in the Mediterranean Sea and for commercial and recreational fisheries in the North East Atlantic Ocean. Subjected to increasing fishing pressure, the wild population has recently experienced significant recruitment fluctuation as well as a northward extension of its distribution area in the North Sea. While the nature of the ecological and/or physiological processes involved remains unresolved, ontogenetic habitat shifts and adult site fidelity could increase the species’ vulnerability to climate change and overfishing. As managers look for expert information to propose management scenarios leading to sustainable exploitation, exploratory modelling appears to be a cost-efficient approach to enhance the understanding of recruitment dynamics and the spatio-temporal scales over which fish populations function. A conceptual modelling framework and its specific data requirements are discussed to tackle some sound ecological questions regarding this species. We consequently provide an updated review of current knowledge on bass population structure, biology and ecology. This paper will hence be particularly valuable to develop spatially-explicit models of European sea bass dynamics under environmental and anthropogenic forcing. Knowledge gaps requiring further research efforts are also reported.