4 resultados para VELOCITY STRUCTURE

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the distributions and transports of the main water masses in the North Atlantic Subpolar Gyre (NASPG) for the mean of the period 2002–2010 (OVIDE sections 2002–2010 every other year), as well as the inter-annual variability of the water mass structure from 1997 (4x and METEOR sections) to 2010. The water mass structure of the NASPG, quantitatively assessed by means of an Optimum MultiParameter analysis (with 14 water masses), was combined with the velocity fields resulting from previous studies using inverse models to obtain the water mass volume transports. We also evaluate the relative contribution to the Atlantic Meridional Overturning Circulation (AMOC) of the main water masses characterizing the NASPG, identifying the water masses that contribute to the AMOC variability. The reduction of the magnitude of the upper limb of the AMOC between 1997 and the 2000s is associated with the reduction in the northward transport of the Central Waters. This reduction of the northward flow of the AMOC is partially compensated by the reduction of the southward flow of the lower limb of the AMOC, associated with the decrease in the transports of Polar Intermediate Water and Subpolar Mode Water (SPMW) in the Irminger Basin. We also decompose the flow over the Reykjanes Ridge from the East North Atlantic Basin to the Irminger Basin (9.4 ± 4.7 Sv) into the contributions of the Central Waters (2.1 ± 1.8 Sv), Labrador Sea Water (LSW, 2.4 ± 2.0 Sv), Subarctic Intermediate Water (SAIW, 4.0 ± 0.5 Sv) and Iceland–Scotland Overflow Water (ISOW, 0.9 ± 0.9 Sv). Once LSW and ISOW cross over the Reykjanes Ridge, favoured by the strong mixing around it, they leave the Irminger Basin through the deep-to-bottom levels. The results also give insights into the water mass transformations within the NASPG, such as the contribution of the Central Waters and SAIW to the formation of the different varieties of SPMW due to air–sea interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To gain a better understanding of the fluid–structure interaction and especially when dealing with a flow around an arbitrarily moving body, it is essential to develop measurement tools enabling the instantaneous detection of moving deformable interface during the flow measurements. A particularly useful application is the determination of unsteady turbulent flow velocity field around a moving porous fishing net structure which is of great interest for selectivity and also for the numerical code validation which needs a realistic database. To do this, a representative piece of fishing net structure is used to investigate both the Turbulent Boundary Layer (TBL) developing over the horizontal porous moving fishing net structure and the turbulent flow passing through the moving porous structure. For such an investigation, Time Resolved PIV measurements are carried out and combined with a motion tracking technique allowing the measurement of the instantaneous motion of the deformable fishing net during PIV measurements. Once the two-dimensional motion of the porous structure is accessed, PIV velocity measurements are analyzed in connection with the detected motion. Finally, the TBL is characterized and the effect of the structure motion on the volumetric flow rate passing though the moving porous structure is clearly demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study used a large spatial scale approach in order to better quantify the relationships between maerl bed structure and a selection of potentially forcing physical factors. Data on maerl bed structure and morpho-sedimentary characteristics were obtained from recent oceanographic surveys using underwater video recording and grab sampling. Considering the difficulties in carrying out real-time monitoring of highly variable hydrodynamic and physicochemical factors, these were generated by three-dimensional numerical models with high spatial and temporal resolution. The BIOENV procedure indicated that variation in the percentage cover of thalli can best be explained (correlation = 0.76) by a combination of annual mean salinity, annual mean nitrate concentration and annual mean current velocity, while the variation in the proportion of living thalli can best be explained (correlation = 0.47) by a combination of depth and mud content. Linear relationships showed that the percentage cover of maerl thalli was positively correlated with nitrate concentration (R2 = 0.78, P < 0.01) and negatively correlated with salinity (R2 = 0.81, P < 0.01), suggesting a strong effect of estuarine discharge on maerl bed structure, and also negatively correlated with current velocity (R2 = 0.81, P < 0.01). When maerl beds were deeper than 10 m, the proportion of living thalli was always below 30% but when they were shallower than 10 m, it varied between 4 and 100%, and was negatively correlated with mud content (R2 = 0.53, P < 0.01). On the other hand, when mud content was below 10%, the proportion of living thalli showed a negative correlation with depth (R2 = 0.84, P < 0.01). This large spatial scale explanation of maerl bed heterogeneity provides a realistic physical characterization of these ecologically interesting benthic habitats and usable findings for their conservation and management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When performing Particle Image Velocimetry (PIV) measurements in complex fluid flows with moving interfaces and a two-phase flow, it is necessary to develop a mask to remove non-physical measurements. This is the case when studying, for example, the complex bubble sweep-down phenomenon observed in oceanographic research vessels. Indeed, in such a configuration, the presence of an unsteady free surface, of a solid–liquid interface and of bubbles in the PIV frame, leads to generate numerous laser reflections and therefore spurious velocity vectors. In this note, an image masking process is developed to successively identify the boundaries of the ship and the free surface interface. As the presence of the solid hull surface induces laser reflections, the hull edge contours are simply detected in the first PIV frame and dynamically estimated for consecutive ones. As for the unsteady surface determination, a specific process is implemented like the following: i) the edge detection of the gradient magnitude in the PIV frame, ii) the extraction of the particles by filtering high-intensity large areas related to the bubbles and/or hull reflections, iii) the extraction of the rough region containing these particles and their reflections, iv) the removal of these reflections. The unsteady surface is finally obtained with a fifth-order polynomial interpolation. The resulted free surface is successfully validated from the Fourier analysis and by visualizing selected PIV images containing numerous spurious high intensity areas. This paper demonstrates how this data analysis process leads to PIV images database without reflections and an automatic detection of both the free surface and the rigid body. An application of this new mask is finally detailed, allowing a preliminary analysis of the hydrodynamic flow.