2 resultados para U-PB AGES
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Authigenic carbonate deposits have been sampled with the remotely operated vehicle ‘MARUM-QUEST 4000 m’ from five methane seeps between 731 and 1823 m water depth along the convergent Makran continental margin, offshore Pakistan (northern Arabian Sea). Two seeps on the upper slope are located within the oxygen minimum zone (OMZ; ca. 100 to 1100 m water depth), the other sites are situated in oxygenated water below the OMZ (below 1100 m water depth). The carbonate deposits vary with regard to their spatial extent, sedimentary fabrics, and associated seep fauna: Within the OMZ, carbonates are spatially restricted and associated with microbial mats, whereas in the oxygenated zone below the OMZ extensive carbonate crusts are exposed on the seafloor with abundant metazoans (bathymodiolin mussels, tube worms, galatheid crabs). Aragonite and Mg-calcite are the dominant carbonate minerals, forming common early diagenetic microcrystalline cement and clotted to radial-fibrous cement. The δ18Ocarbonate values range from 1.3 to 4.2‰ V-PDB, indicating carbonate precipitation at ambient bottom-water temperature in shallow sediment depth. Extremely low δ13Ccarbonate values (as low − 54.6‰ V-PDB) point to anaerobic oxidation of methane (AOM) as trigger for carbonate precipitation, with biogenic methane as dominant carbon source. Prevalence of biogenic methane in the seepage gas is corroborated by δ13Cmethane values ranging from − 70.3 to − 66.7‰ V-PDB, and also by back-calculations considering δ13Cmethane values of carbonate and incorporated lipid biomarkers. These calculations (Δδ13Cmethane–carbonate, Δδ13CANME–methane, Δδ13CMOX–methane) prove to be useful to assess the carbon stable isotope composition of seeping methane if this has not been determined in the first place; such an approach represents a useful tool to reconstruct fluid composition of ancient seeps. AOM is also revealed by lipid biomarkers of anaerobic methane oxidizing archaea such as crocetane, pentamethylicosane (PMI), and sn2-hydroxyarchaeol strongly depleted in 13C (δ13C values as low as − 127‰ V-PDB). Biomarkers of sulphate-reducing bacteria are also abundant, showing slightly less negative δ13C values, but still significantly 13C-depleted (average values as low as − 101‰). Other bacterial biomarkers, such as bacteriohopanepolyols (BHPs), hopanols, and hopanoic acids are detected in most carbonates, but are particularly common in seep carbonates from the non-OMZ sites. The BHP patterns of these carbonates and their low δ13C values resemble patterns of aerobic methanotrophic bacteria. In the shallower OMZ sites, BHPs revealed much lower contents and varying compositions, most likely reflecting other sources than aerobic methanotrophic bacteria. 230Th/U carbonate ages indicate that AOM-induced carbonate precipitation at the deeper non-OMZ seeps occurred mainly during the late Pleistocene-Holocene transition, i.e. between 19 and 15 ka before present, when the global sea level was lower than today.
Resumo:
VESPA was a successful 25 day research cruise on R/V l'Atalante that took place in May and June 2015. The main aim was to acquire new rock samples from extinct volcanoes on the Norfolk, Loyalty and Three Kings ridges, which connect New Caledonia and New Zealand. This was in order to test various hypotheses of Late Cretaceous-Miocene SW Pacific tectonic development relating to (i) nature and duration of magmatism on the ridges; (ii) timing of subduction initiation east of northern Zealandia; (iii) postulated subduction polarity changes. A total of 3400 km of 'sismique rapide' shallow reflection seismic data were acquired and processed onboard. The seismic lines provided a very useful structural-stratigraphic framework for the rock dredging. Combined with multibeam bathymetry data they allowed intelligent targeting of acoustic basement (lavas) and specific seismic reflectors (sedimentary strata) on rocky slopes and fault scarps. Different stratigraphic levels of the Loyalty and Three Kings Ridge volcanic piles were sampled by dredging at different water depths on the Cook Fracture Zone and Cagou Trough fault scarps. By the end of the cruise, 43 dredges had been attempted and 36 of them yielded igneous or sedimentary rocks potentially useful to the VESPA project. Onboard use of a portable X-ray fluorescence unit confirmed the presence of intraplate (but no arc) volcanoes on the Norfolk Ridge and presence of arc, intraplate and shoshonitic volcanoes on the Loyalty and Three Kings Ridges. A total of 770 kg of rock was retained for post-cruise analysis in New Caledonia, France and New Zealand. Future work will include micropaleontological dating of sedimentary rocks, U-Pb and Ar-Ar isotopic dating of igneous rocks, and whole rock geochemical and tracer isotope analyses. We are optimistic that many of the initial research hypotheses will be able to be tested.