2 resultados para Tropical Rainfall Measuring Mission.

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach to retrieve sea surface wind speed (SWS) in tropical cyclones (TCs) from the Advanced Microwave Scanning Radiometer 2 (AMSR2) data is presented. Analysis of all six AMSR2 C- and X-band channel measurements over TCs is shown to efficiently help to separate the rain contribution. Corrected measurements at 6.9 and 10.65 GHz are then used to retrieve the SWS. Spatial and temporal collocation of AMSR2 and tropical rain measurement mission (TRMM) microwave instrument (TMI) data is then further used to empirically relate TMI rain rate (RR) product to RR estimates from AMSR2 in hurricanes. SWS estimates are validated with measurements from the stepped frequency microwave radiometer (SFMR). As further tested, more than 100 North Atlantic and North Pacific TCs are analyzed for the 2012–2014 period. Despite few particular cases, most SWS fields are in a very good agreement with TC center data on maximum wind speeds, radii of storm, and hurricane winds. As also compared, very high consistency between AMSR2 and L-band SMOS wind speed estimates are obtained, especially for the super typhoon Haiyan, to prove the high potential of AMSR2 measurements in TCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A radar scatterometer operates by transmitting a pulse of microwave energy toward the ocean's surface and measuring the normalized (per-unit-surface) radar backscatter coefficient (σ°). The primary application of scatterometry is the measurement of near-surface ocean winds. By combining σ° measurements from different azimuth angles, the 10 m vector wind can be determined through a Geophysical Model Function (GMF), which relates wind and backscatter. This paper proposes a mission concept for the measurement of both oceanic winds and surface currents, which makes full use of earlier C-band radar remote sensing experience. For the determination of ocean currents, in particular, the novel idea of using two chirps of opposite slope is introduced. The fundamental processing steps required to retrieve surface currents are given together with their associated accuracies. A detailed description of the mission proposal and comparisons between real and retrieved surface currents are presented. The proposed ocean Doppler scatterometer can be used to generate global surface ocean current maps with accuracies better than 0.2 m/s at a spatial resolution better than 25 km (i.e., 12.5 km spatial sampling) on a daily basis. These maps will allow gaining some insights on the upper ocean mesoscale dynamics. The work lies at a frontier, given that the present inability to measure ocean currents from space in a consistent and synoptic manner represents one of the greatest weaknesses in ocean remote sensing.