2 resultados para Thermal stress index
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
The accumulation of mannosyl-glycerate (MG), the salinity stress response osmolyte of Thermococcales, was investigated as a function of hydrostatic pressure in Thermococcus barophilus strain MP, a hyperthermophilic, piezophilic archaeon isolated from the Snake Pit site (MAR), which grows optimally at 40 MPa. Strain MP accumulated MG primarily in response to salinity stress, but in contrast to other Thermococcales, MG was also accumulated in response to thermal stress. MG accumulation peaked for combined stresses. The accumulation of MG was drastically increased under sub-optimal hydrostatic pressure conditions, demonstrating that low pressure is perceived as a stress in this piezophile, and that the proteome of T. barophilus is low-pressure sensitive. MG accumulation was strongly reduced under supra-optimal pressure conditions clearly demonstrating the structural adaptation of this proteome to high hydrostatic pressure. The lack of MG synthesis only slightly altered the growth characteristics of two different MG synthesis deletion mutants. No shift to other osmolytes was observed. Altogether our observations suggest that the salinity stress response in T. barophilus is not essential and may be under negative selective pressure, similarly to what has been observed for its thermal stress response. Introduction
Resumo:
Acclimation and adaptation, which are key to species survival in a changing climate, can be observed in terms of membrane lipid composition. Remodelling membrane lipids, via homeoviscous adaptation (HVA), counteracts membrane dysfunction due to temperature in poikilotherms. In order to assess the potential for acclimation and adaptation in the honeycomb worm, Sabellaria alveolata, a reef-building polychaete that supports high biodiversity, we carried out common-garden experiments using individuals from along its latitudinal range. Individuals were exposed to a stepwise temperature increase from 15 °C to 25 °C and membrane lipid composition assessed. Our results suggest that S. alveolata was able to acclimate to higher temperatures, as observed by a decrease in unsaturation index and 20:5n-3. However, over the long-term at 25 °C, lipid composition patterns are not consistent with HVA expectations and suggest a stress response. Furthermore, unsaturation index of individuals from the two coldest sites were higher than those from the two warmest sites, with individuals from the thermally intermediate site being in-between, likely reflecting local adaptation to temperature. Therefore, lipid remodelling appears limited at the highest temperatures in S. alveolata, suggesting that individuals inhabiting warm environments may be close to their upper thermal tolerance limits and at risk in a changing climate.