2 resultados para The ISTRION platform

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of modern carbonate systems is commonly helps in improving facies interpretation in fossil reefs and in providing analogues of sediment distribution depending on the specific platform configuration (i.e. rimmed shelves and isolated carbonate platforms). This paper deals with a geomorphological and sedimentological study of the Glorieuses Archipelago, an isolated carbonate platform located between the northern tip of Madagascar and Mayotte. The dataset consists of Digital Terrain Model, satellite imagery, and box-sediment samples. Analyses of grain-size and composition of carbonate grains are used to characterize the distribution and heterogeneity of sediment accumulated on the isolated platform. Main results show that the Glorieuses Archipelago is organized in distinctive morphological units, including a reef flat developed along the windward side, an apron, and a semi-enclosed (< 12 m water depth) to open lagoon (> 12 m and up to 15 m water depth). The lack of carbonate mud in sediments deposited on the archipelago can be explained by the direct connection between the lagoon and the open ocean. The main carbonate grains include Halimeda segments, coral fragments, large benthic foraminifers, red algae, and molluscs. According to the shape and the position of intertidal sandwaves, the current arrangement of moderately sorted fine to medium sands appears to be strongly influenced by tidal currents. The in-situ sediment production, accumulation and transport on the platform finally contribute to carbonate sand export to distinct deep marine areas depending on wind regimes and currents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The European Multidisciplinary Seafloor and water-column Observatory (EMSO) European Research Infrastructure Consortium (ERIC) provides power, communications, sensors, and data infrastructure for continuous, high-resolution, (near-)real-time, interactive ocean observations across a multidisciplinary and interdisciplinary range of research areas including biology, geology, chemistry, physics, engineering, and computer science, from polar to subtropical environments, through the water column down to the abyss. Eleven deep-sea and four shallow nodes span from the Arctic through the Atlantic and Mediterranean, to the Black Sea. Coordination among the consortium nodes is being strengthened through the EMSOdev project (H2020), which will produce the EMSO Generic Instrument Module (EGIM). Early installations are now being upgraded, for example, at the Ligurian, Ionian, Azores, and Porcupine Abyssal Plain (PAP) nodes. Significant findings have been flowing in over the years; for example, high-frequency surface and subsurface water-column measurements of the PAP node show an increase in seawater pCO2 (from 339 μatm in 2003 to 353 μatm in 2011) with little variability in the mean air-sea CO2 flux. In the Central Eastern Atlantic, the Oceanic Platform of the Canary Islands open-ocean canary node (aka ESTOC station) has a long-standing time series on water column physical, biogeochemical, and acidification processes that have contributed to the assessment efforts of the Intergovernmental Panel on Climate Change (IPCC). EMSO not only brings together countries and disciplines but also allows the pooling of resources and coordination to assemble harmonized data into a comprehensive regional ocean picture, which will then be made available to researchers and stakeholders worldwide on an open and interoperable access basis.