2 resultados para TOXIC PLUMES

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harmful algal blooms of Alexandrium spp. dinoflagellates regularly occur in French coastal waters contaminating shellfish. Studies have demonstrated that toxic Alexandrium spp. disrupt behavioural and physiological processes in marine filter-feeders, but molecular modifications triggered by phycotoxins are less well understood. This study analyzed the mRNA levels of 7 genes encoding antioxidant/detoxifying enzymes in gills of Pacific oysters (Crassostrea gigas) exposed to a cultured, toxic strain of A. minutum, a producer of paralytic shellfish toxins (PST) or fed Tisochrysis lutea (T. lutea, formerly Isochrysis sp., clone Tahitian (T. iso)), a non-toxic control diet, in four repeated experiments. Transcript levels of sigma-class glutathione S-transferase (GST), glutathione reductase (GR) and ferritin (Fer) were significantly higher in oysters exposed to A. minutum compared to oysters fed T. lutea. The detoxification pathway based upon glutathione (GSH)-conjugation of toxic compounds (phase II) is likely activated, and catalyzed by GST. This system appeared to be activated in gills probably for the detoxification of PST and/or extra-cellular compounds, produced by A. minutum. GST, GR and Fer can also contribute to antioxidant functions to prevent cellular damage from increased reactive oxygen species (ROS) originating either from A. minutum cells directly, from oyster hemocytes during immune response, or from other gill cells as by-products of detoxification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dinoflagellates of Alexandrium genus are known to be producers of paralytic shellfish toxins that regularly impact the shellfish aquaculture industry and fisheries. Accurate detection of Alexandrium including A. minutum is crucial for environmental monitoring and sanitary issues. In this study, we firstly developed a quantitative lateral flow immunoassay (LFIA) using super-paramagnetic nanobeads for A. minutum whole cells. This dipstick assay relies on two distinct monoclonal antibodies used in a sandwich format and directed against surface antigens of this organism. No sample preparation is required. Either frozen or live cells can be detected and quantified. The specificity and sensitivity are assessed by using phytoplankton culture and field samples spiked with a known amount of cultured A. minutum cells. This LFIA is shown to be highly specific for A. minutum and able to detect reproducibly 105 cells/L within 30 min. The test is applied to environmental samples already characterized by light microscopy counting. No significant difference is observed between the cell densities obtained by these two methods. This handy super-paramagnetic lateral flow immnunoassay biosensor can greatly assist water quality monitoring programs as well as ecological research.