5 resultados para Swash zone sediment transport
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Current coastal-evolution models generally lack the ability to accurately predict bed level change in shallow (<~2 m) water, which is, at least partly, due to the preclusion of the effect of surface-induced turbulence on sand suspension and transport. As a first step to remedy this situation, we investigated the vertical structure of turbulence in the surf and swash zone using measurements collected under random shoaling and plunging waves on a steep (initially 1:15) field-scale sandy laboratory beach. Seaward of the swash zone, turbulence was measured with a vertical array of three Acoustic Doppler Velocimeters (ADVs), while in the swash zone two vertically spaced acoustic doppler velocimeter profilers (Vectrino profilers) were applied. The vertical turbulence structure evolves from bottom-dominated to approximately vertically uniform with an increase in the fraction of breaking waves to ~ 50%. In the swash zone, the turbulence is predominantly bottom-induced during the backwash and shows a homogeneous turbulence profile during uprush. We further find that the instantaneous turbulence kinetic energy is phase-coupled with the short-wave orbital motion under the plunging breakers, with higher levels shortly after the reversal from offshore to onshore motion (i.e. wavefront).
Resumo:
Numerous ecological problems of continental shelf ecosystems require a refined knowledge of the evolution of suspended sediment concentrations (SSC). The present investigation focuses on the spatial and temporal variabilities of near-surface SSC in coastal waters of the English Channel (western Europe) by exploiting numerical predictions from the Regional Ocean Modeling System ROMS. Extending previous investigations of ROMS performances in the Channel, this analysis refines, with increased spatial and temporal resolutions, the characterization of near-surface SSC patterns revealing areas where concentrations are highly correlated with evolutions of tides and waves. Significant tidal modulations of near-surface concentrations are thus found in the eastern English Channel and the French Dover Strait while a pronounced influence of waves is exhibited in the Channel Islands Gulf. Coastal waters present furthermore strong SSC temporal variations, particularly noticeable during storm events of autumn and winter, with maximum near-surface concentrations exceeding 40 mg l−1 and increase by a factor from 10 to 18 in comparison with time-averaged concentrations. This temporal variability strongly depends on the granulometric distribution of suspended sediments characterized by local bi-modal contributions of silts and sands off coastal irregularities of the Isle of Wight, the Cotentin Peninsula and the southern Dover Strait.
Resumo:
In order to increase our knowledge about sediment transport in the bay and maritime part of the River of Morlaix (Finistère), measurernènts have been perforrned on site. This report gives the granulometrical and physical parameters of the sediments as weIl as the hydrodynamics, used for a model of particulate transport in the area. The rnodel and its application will be published later
Resumo:
Over the past years, several studies have raised concerns about the possible interactions between methane hydrate decomposition and external change. To carry out such an investigation, it is essential to characterize the baseline dynamics of gas hydrate systems related to natural geological and sedimentary processes. This is usually treated through the analysis of sulfate-reduction coupled to anaerobic oxidation of methane (AOM). Here, we model sulfate reduction coupled with AOM as a two-dimensional (2D) problem including, advective and diffusive transport. This is applied to a case study from a deep-water site off Nigeria’s coast where lateral methane advection through turbidite layers was suspected. We show by analyzing the acquired data in combination with computational modeling that a two-dimensional approach is able to accurately describe the recent past dynamics of such a complex natural system. Our results show that the sulfate-methane-transition-zone (SMTZ) is not a vertical barrier for dissolved sulfate and methane. We also show that such a modeling is able to assess short timescale variations in the order of decades to centuries.
Resumo:
Two Pleistocene mass transport deposits (MTDs), with volumes of thousands of km(3), have been identified from multi-channel seismic data in the abyssal plain at the front of the Barbados accretionary prism. Estimated sediment volumes for these MTDs are likely underestimated due to limited seismic coverage. In this work, we suggest that these MTDs are comparable in size to large submarine landslides as reported in the literature. These MTDs lie on the vicinity of two major oceanic ridges, the Barracuda Ridge and the Tiburon Rise. It is also suggested in this work that the MTDs come from seismicity associated with the formation of the Barracuda Ridge or the Barbados accretionary prism; however, triggering mechanisms involved in their formation remain uncertain. The present study discusses the potential causal factors accounting for the formation of these MTDs.