2 resultados para Sun and beach
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
This text presents and explicits the story of a marine drone: the Wave Glider, designed and developed by Liquid Robotics, an American company of the Silicon Valley. The text specifies its functioning, directly dependent on energies that are the swell and the sun and its technical characteristics authorizing a set of measures of in situ parameters (sea temperature, salinity, currents, marine acoustics, video but also meteorological data acquisitions). A set of scientific or operational applications is also introduced. A detail is supplied on the first experience led in New Caledonia: inaugural mission of the drone Wave Glider, property of the Company Assystem, for a route between Nouméa and Lifou and return. Several perspectives of use of such a tool in New Caledonia and in the Pacific are proposed.
Resumo:
Current coastal-evolution models generally lack the ability to accurately predict bed level change in shallow (<~2 m) water, which is, at least partly, due to the preclusion of the effect of surface-induced turbulence on sand suspension and transport. As a first step to remedy this situation, we investigated the vertical structure of turbulence in the surf and swash zone using measurements collected under random shoaling and plunging waves on a steep (initially 1:15) field-scale sandy laboratory beach. Seaward of the swash zone, turbulence was measured with a vertical array of three Acoustic Doppler Velocimeters (ADVs), while in the swash zone two vertically spaced acoustic doppler velocimeter profilers (Vectrino profilers) were applied. The vertical turbulence structure evolves from bottom-dominated to approximately vertically uniform with an increase in the fraction of breaking waves to ~ 50%. In the swash zone, the turbulence is predominantly bottom-induced during the backwash and shows a homogeneous turbulence profile during uprush. We further find that the instantaneous turbulence kinetic energy is phase-coupled with the short-wave orbital motion under the plunging breakers, with higher levels shortly after the reversal from offshore to onshore motion (i.e. wavefront).