1 resultado para Stepwise multiple linear regression
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (43)
- Biblioteca de Teses e Dissertações da USP (11)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (40)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (128)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (51)
- Brock University, Canada (9)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (31)
- Centro Hospitalar do Porto (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (25)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (4)
- Digital Commons - Michigan Tech (3)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (19)
- Digital Knowledge Repository of Central Drug Research Institute (4)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (24)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (3)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Glasgow Theses Service (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (17)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Publishing Network for Geoscientific & Environmental Data (10)
- QSpace: Queen's University - Canada (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (6)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (31)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (9)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (3)
- Repositório Institucional da Universidade Federal de Goiás - UFG (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (110)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (8)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo España (3)
- Scielo Saúde Pública - SP (60)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (16)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (3)
- Universidade dos Açores - Portugal (4)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (40)
- Universidade Metodista de São Paulo (9)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (8)
- Université de Lausanne, Switzerland (50)
- Université de Montréal, Canada (22)
- Université Laval Mémoires et thèses électroniques (2)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (29)
- University of Washington (7)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Classical regression analysis can be used to model time series. However, the assumption that model parameters are constant over time is not necessarily adapted to the data. In phytoplankton ecology, the relevance of time-varying parameter values has been shown using a dynamic linear regression model (DLRM). DLRMs, belonging to the class of Bayesian dynamic models, assume the existence of a non-observable time series of model parameters, which are estimated on-line, i.e. after each observation. The aim of this paper was to show how DLRM results could be used to explain variation of a time series of phytoplankton abundance. We applied DLRM to daily concentrations of Dinophysis cf. acuminata, determined in Antifer harbour (French coast of the English Channel), along with physical and chemical covariates (e.g. wind velocity, nutrient concentrations). A single model was built using 1989 and 1990 data, and then applied separately to each year. Equivalent static regression models were investigated for the purpose of comparison. Results showed that most of the Dinophysis cf. acuminata concentration variability was explained by the configuration of the sampling site, the wind regime and tide residual flow. Moreover, the relationships of these factors with the concentration of the microalga varied with time, a fact that could not be detected with static regression. Application of dynamic models to phytoplankton time series, especially in a monitoring context, is discussed.