3 resultados para Stable Isotopes
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Heavily contaminated sediments are a serious concern for ecosystem quality, especially in coastal areas, where vulnerability is high due to intense anthropogenic pressure. Surface sediments (54 stations), 50 cm interface cores (five specific stations), river particles, coal and bulk Pb plate from past French Navy activities, seawater and mussels were collected in Toulon Bay (NW Mediterranean Sea). Lead content and Pb stable isotope composition have evidenced the direct impact of sediment pollution stock on both the water column quality and the living organisms, through the specific Pb isotopic signature in these considered compartments. The history of pollution events including past and present contaminant dispersion in Toulon Bay were also demonstrated by historical records of Pb content and Pb isotope ratios in sediment profiles. The sediment resuspension events, as simulated by batch experiments, could be a major factor contributing to the high Pb mobility in the considered ecosystem. A survey of Pb concentrations in surface seawater at 40 stations has revealed poor seawater quality, affecting both the dissolved fraction and suspended particles and points to marina/harbors as additional diffuse sources of dissolved Pb.
Resumo:
Zinc stable isotopes measurements by MC-ICP-MS, validated by laboratory intercalibrations, were performed on wild oysters, suspended particles and filtered river/estuarine water samples to provide new constraints for the use of Zn isotopes as environmental tracers. The samples selected were representative of the long range (400 km) transport of metal (Zn, Cd, etc.) contamination from former Zn-refining activities at Decazeville (i.e. δ66Zn > 1 ‰) and its phasing out, recorded during 30 years in wild oysters from the Gironde Estuary mouth (RNO/ROCCH sample bank). The study also addresses additional anthropogenic sources (urban and viticulture) and focuses on geochemical reactivity of Zn in the turbidity gradient and the maximum turbidity zone (MTZ) of the fluvial Gironde Estuary. In this area, dissolved Zn showed a strong removal onto suspended particulate matter (SPM) and progressive enrichment in heavy isotopes with increasing SPM concentrations varying from δ66Zn = -0.02 ‰ at 2 mg/L to +0.90 ‰ at 1310 mg/L. These signatures were attributed to kinetically driven adsorption due to strongly increasing sorption sites in the turbidity gradient and MTZ of the estuary. Oysters from the estuary mouth, contaminated sediments from the Lot River and SPM entering the estuary showed parallel historical evolutions (1979-2010) for Zn/Cd ratios but not for δ66Zn values. Oysters had signatures varying from δ66Zn = 1.43 ‰ in 1983 to 1.18 ‰ in 2010 and were offset by δ66Zn = 0.6 - 0.7 ‰ compared to past (1988) and present SPM from the salinity gradient. Isotopic signatures in river-borne particles entering the Gironde Estuary under contrasting freshwater discharge regimes during 2003-2011 showed similar values (δ66Zn ≈ 0.35 ± 0.03 ‰; 1SD, n=15), i.e. they were neither related to former metal refining activities at least for the past decade nor clearly affected by other anthropogenic sources. Therefore, the Zn isotopic signatures in Gironde oysters reflect the geochemical reactivity of Zn in the estuary rather than signatures of past metallurgical contaminations in the watershed as recorded in contaminated river sediments. The study also shows that the isotopic composition of Zn is strongly fractionated by its geochemical reactivity in the Gironde Estuary, representative of meso-macrotidal estuarine systems.
Resumo:
Although stable isotope ratios are increasingly used to investigate the trophic ecology of marine organisms, their spatial variations are still poorly understood in the coastal environment. In this study, we measured the stable isotope composition (δ13C, δ15N) of suspended particulate organic matter (SPOM) (primary producer), a suspension feeder, the great scallop Pecten maximus (primary consumer), megabenthic decapods and benthic fishes (secondary consumers) along a depth gradient (from 5m to 155m depth) across the continental shelf of the Bay of Biscay. Although the three trophic levels exhibited similar δ13C patterns along the gradient, the δ15N patterns varied between SPOM, scallops and carnivores. The δ15N difference between SPOM and scallops decreased with increasing depth, suggesting that non trophic factors may affect the stable isotope composition of scallops at deepest sampling stations. An opposed trend was found between scallops and carnivores, suggesting that the trophic level of these carnivores increased at higher depth, possibly as an adaptation to lower prey abundances. Although our results suggest that primary consumers are suitable to establish isotopic baselines in coastal environments, we stress the need for further studies aiming at characterizing the variability of stable isotopes in coastal biota, and the respective effects of baseline, trophic and metabolic factors in their isotopic composition.