7 resultados para Spatio-temporal dynamics
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Dietary studies of marine species constitute an important key to improve the understanding of its biology and of its role in the ecosystem. Thus, prey-predator relationships structure and determine population dynamics and the trophic network at the ecosystem scale. Among the major study sites, the marine ecosystem is submitted to natural and anthropogenic constraints. In the North-Eastern part of the Atlantic Ocean, the Bay of Biscay is a large open area surrounded South by Spain and East by France. This bay is an historic place of intense fishery activities for which the main small pelagic species targeted are the pilchard, Sardina pilchardus and the anchovy, Engraulis encrasicolus. The aim of this work is to analyze the trophic ecology of these two small pelagic fish in spring in the Bay of Biscay. To do this, a first section is devoted to their prey composed by the mesozooplanktonic compartment, through a two-fold approach: the characterization of their spatio-temporal dynamics during the decade 2003-2013 and the measurement of their energetic content in spring. For this season, it appears that all prey types are not worth energetically and that the Bay of Biscay represents a mosaic of dietary habitat. Moreover, the spring mesozooplankton community presents a strong spatial structuration, a temporal evolution marked by a major change in abundance and a control by the microphytoplankton biomass. The second section of this work is relative to a methodological approach of the trophic ecology of S. pilchardus and E. encrasicolus. Three different trophic tracers have been used: isotopic ratios of carbon and nitrogen, parasitological fauna and mercury contamination levels. To improve the use of the first of these trophic tracers, an experimental approach has been conducted with S. pilchardus to determine a trophic discrimination factor. Finally, it appears that the use of these three trophic tracers has always been permitted to highlight a temporal variability of the relative trophic ecology of these fish. However, no spatial dynamics could be identified through these three trophic tracers.
Resumo:
Intertidal flats of the estuarine macro-intertidal Baie des Veys (France) were investigated to identify spatial features of sediment and microphytobenthos (MPB) in April 2003. Gradients occurred within the domain, and patches were identified close to vegetated areas or within the oyster-farming areas where calm physical conditions and biodeposition altered the sediment and MPB landscapes. Spatial patterns of chl a content were explained primarily by the influence of sediment features, while bed elevation and compaction brought only minor insights into MPB distribution regulation. The smaller size of MPB patches compared to silt patches revealed the interplay between physical structure defining the sediment landscape, the biotic patches that they contain, and that median grain-size is the most important parameter in explaining the spatial pattern of MPB. Small-scale temporal dynamics of sediment chl a content and grain-size distribution were surveyed in parallel during 2 periods of 14 d to detect tidal and seasonal variations. Our results showed a weak relationship between mud fraction and MPB biomass in March, and this relationship fully disappeared in July. Tidal exposure was the most important parameter in explaining the summer temporal dynamics of MPB. This study reveals the general importance of bed elevation and tidal exposure in muddy habitats and that silt content was a prime governing physical factor in winter. Biostabilisation processes seemed to behave only as secondary factors that could only amplify the initial silt accumulation in summer rather than primary factors explaining spatial or long-term trends of sediment changes.
Resumo:
European sea bass, Dicentrarchus labrax, is a highly valuable species in Europe, both for aquaculture in the Mediterranean Sea and for commercial and recreational fisheries in the North East Atlantic Ocean. Subjected to increasing fishing pressure, the wild population has recently experienced significant recruitment fluctuation as well as a northward extension of its distribution area in the North Sea. While the nature of the ecological and/or physiological processes involved remains unresolved, ontogenetic habitat shifts and adult site fidelity could increase the species’ vulnerability to climate change and overfishing. As managers look for expert information to propose management scenarios leading to sustainable exploitation, exploratory modelling appears to be a cost-efficient approach to enhance the understanding of recruitment dynamics and the spatio-temporal scales over which fish populations function. A conceptual modelling framework and its specific data requirements are discussed to tackle some sound ecological questions regarding this species. We consequently provide an updated review of current knowledge on bass population structure, biology and ecology. This paper will hence be particularly valuable to develop spatially-explicit models of European sea bass dynamics under environmental and anthropogenic forcing. Knowledge gaps requiring further research efforts are also reported.
Resumo:
Background: Partially clonal organisms are very common in nature, yet the influence of partial asexuality on the temporal dynamics of genetic diversity remains poorly understood. Mathematical models accounting for clonality predict deviations only for extremely rare sex and only towards mean inbreeding coefficient (F-IS) over bar < 0. Yet in partially clonal species, both F-IS < 0 and F-IS > 0 are frequently observed also in populations where there is evidence for a significant amount of sexual reproduction. Here, we studied the joint effects of partial clonality, mutation and genetic drift with a state-and-time discrete Markov chain model to describe the dynamics of F-IS over time under increasing rates of clonality. Results: Results of the mathematical model and simulations show that partial clonality slows down the asymptotic convergence to F-IS = 0. Thus, although clonality alone does not lead to departures from Hardy-Weinberg expectations once reached the final equilibrium state, both negative and positive F-IS values can arise transiently even at intermediate rates of clonality. More importantly, such "transient" departures from Hardy Weinberg proportions may last long as clonality tunes up the temporal variation of F-IS and reduces its rate of change over time, leading to a hyperbolic increase of the maximal time needed to reach the final mean (F-IS,F-infinity) over bar value expected at equilibrium. Conclusion: Our results argue for a dynamical interpretation of F-IS in clonal populations. Negative values cannot be interpreted as unequivocal evidence for extremely scarce sex but also as intermediate rates of clonality in finite populations. Complementary observations (e.g. frequency distribution of multiloci genotypes, population history) or time series data may help to discriminate between different possible conclusions on the extent of clonality when mean (F-IS) over bar values deviating from zero and/or a large variation of F-IS over loci are observed.
Resumo:
Adult anchovies in the Bay of Biscay perform north to south migration from late winter to early summer for spawning. However, what triggers and drives the geographic shift of the population remains unclear and poorly understood. An individual-based fish model has been implemented to explore the potential mechanisms that control anchovy's movement routes toward its spawning habitats. To achieve this goal, two fish movement behaviors – gradient detection through restricted area search and kinesis – simulated fish response to its dynamic environment. A bioenergetics model was used to represent individual growth and reproduction along the fish trajectory. The environmental forcing (food, temperature) of the model was provided by a coupled physical–biogeochemical model. We followed a hypothesis-testing strategy to actualize a series of simulations using different cues and computational assumptions. The gradient detection behavior was found as the most suitable mechanism to recreate the observed shift of anchovy distribution under the combined effect of sea-surface temperature and zooplankton. In addition, our results suggested that southward movement occurred more actively from early April to middle May following favorably the spatio-temporal evolution of zooplankton and temperature. In terms of fish bioenergetics, individuals who ended up in the southern part of the bay presented better condition based on energy content, proposing the resulting energy gain as an ecological explanation for this migration. The kinesis approach resulted in a moderate performance, producing distribution pattern with the highest spread. Finally, model performance was not significantly affected by changes on the starting date, initial fish distribution and number of particles used in the simulations, whereas it was drastically influenced by the adopted cues.
Resumo:
Deep-sea hydrothermal-vent habitats are typically linear, discontinuous, and short-lived. Some of the vent fauna such as the endemic polychaete family Alvinellidae are thought to lack a planktotrophic larval stage and therefore not to broadcast-release their offspring. The genetic evidence points to exchanges on a scale that seems to contradict this type of reproductive pattern. However, the rift valley may topographically rectify the bottom currents, thereby facilitating the dispersal of propagules between active vent sites separated in some cases by 10s of kilometers or more along the ridge axis. A propagule flux model based on a matrix of intersite distances, long-term current-meter data, and information on the biology and ecology of Alvinellidae was developed to test this hypothesis. Calculations of the number of migrants exchanged between two populations per generation (N-m) allowed comparisons with estimates obtained from genetic studies. N, displays a logarithmic decrease with increasing dispersal duration and reaches the critical value of 1 after 8 d when the propagule Aux model was run in standard conditions. At most, propagule traveling time cannot reasonably exceed 15-30 d, according to the model, whereas reported distances between sites would require longer lasting dispersal abilities. Two nonexclusive explanations are proposed. First, some aspects of the biology of Alvinellidae have been overlooked and long-distance dispersal does occur. Second, such dispersal never occurs in Alvinellidae, but the spatial-temporal dynamics of vent sites over geological timescales allows short-range dispersal processes to maintain gene flow.
Resumo:
A study of the temporal dynamics of iron concentrations and temperature on a faunal assemblage at the Lucky Strike vent was performed using the Tempo ecological module at the EMSO-Azores deep-sea observatory. The CHEMINI in situ analyzer was implemented on this structure to determine reactive iron concentrations in unfiltered seawater samples along with a temperature probe. Stability tests were performed on the CHEMINI analyzer before deployment (optical module, hyperbaric tests, and deep-sea calibration) for long-term in situ analysis of reactive iron (six months, 2013–2014) at the Tour Eiffel active edifice. Recorded daily, the in situ standard (25 \mu mol.L {}^{-1} ) showed excellent reproducibility (1.07%, n=522 ), confirming satisfactory analytical performance of the CHEMINI analyzer and thus validating the iron concentrations measured by the instrument. Furthermore, the analyzer proved to be reliable and robust over time. The averaged reactive iron concentration for the six-month period remained low ([Fe] =text{7.12}\pm text{2.11} \mu mol.L {}^{-1} , n=519 ), but showed some noticeable variations with temperature. Reactive iron concentrations and temperature were significantly correlated emphasizing reactive iron stabilization over the time of deployment. Period spectra indicated strong tidal influence and relevant frequencies of four to five days for both variables.