2 resultados para Spatial population dynamics
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
The protozoan parasite Marteilia refringens has been partly responsible for the severe decrease in the production of the European flat oyster Ostrea edulis Linnaeus in France since the 1970s. The calanoid copepod Paracartia grani Sars was recently found to be a host for M refringens in French shallow-water oyster ponds ('claires'). This study reconsidered M refringens transmission dynamics in the light of this finding, taking into account not only oyster infection dynamics and environmental factors but also data concerning the copepod host. P. grani population dynamics in the claire under study revealed that this species is the dominant planktonic copepod in this confined ecosystem. During winter, M refringens overwintered in O. edulis, with P. grani existing only as resting eggs in the sediment. The increase in temperature in spring controlled and synchronized both the release of M refringens sporangia in the oyster feces, and the hatching of the benthic resting eggs of the copepod. Infection of oysters by M refringens was limited to June, July and August, coinciding with (1) the highest temperature recorded in the claire, and (2) the highest abundance of P. grani. PCR detection of M refringens in P. grani during the summer period was linked to the release of parasite sporangia by the oyster. Our results are supported by previous results on the effective transmission of this parasite from the oyster to the copepod.
Resumo:
Dietary studies of marine species constitute an important key to improve the understanding of its biology and of its role in the ecosystem. Thus, prey-predator relationships structure and determine population dynamics and the trophic network at the ecosystem scale. Among the major study sites, the marine ecosystem is submitted to natural and anthropogenic constraints. In the North-Eastern part of the Atlantic Ocean, the Bay of Biscay is a large open area surrounded South by Spain and East by France. This bay is an historic place of intense fishery activities for which the main small pelagic species targeted are the pilchard, Sardina pilchardus and the anchovy, Engraulis encrasicolus. The aim of this work is to analyze the trophic ecology of these two small pelagic fish in spring in the Bay of Biscay. To do this, a first section is devoted to their prey composed by the mesozooplanktonic compartment, through a two-fold approach: the characterization of their spatio-temporal dynamics during the decade 2003-2013 and the measurement of their energetic content in spring. For this season, it appears that all prey types are not worth energetically and that the Bay of Biscay represents a mosaic of dietary habitat. Moreover, the spring mesozooplankton community presents a strong spatial structuration, a temporal evolution marked by a major change in abundance and a control by the microphytoplankton biomass. The second section of this work is relative to a methodological approach of the trophic ecology of S. pilchardus and E. encrasicolus. Three different trophic tracers have been used: isotopic ratios of carbon and nitrogen, parasitological fauna and mercury contamination levels. To improve the use of the first of these trophic tracers, an experimental approach has been conducted with S. pilchardus to determine a trophic discrimination factor. Finally, it appears that the use of these three trophic tracers has always been permitted to highlight a temporal variability of the relative trophic ecology of these fish. However, no spatial dynamics could be identified through these three trophic tracers.