4 resultados para Spatial modelling
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Well-designed marine protected area (MPA) networks can deliver a range of ecological, economic and social benefits, and so a great deal of research has focused on developing spatial conservation prioritization tools to help identify important areas. However, whilst these software tools are designed to identify MPA networks that both represent biodiversity and minimize impacts on stakeholders, they do not consider complex ecological processes. Thus, it is difficult to determine the impacts that proposed MPAs could have on marine ecosystem health, fisheries and fisheries sustainability. Using the eastern English Channel as a case study, this paper explores an approach to address these issues by identifying a series of MPA networks using the Marxan and Marxan with Zones conservation planning software and linking them with a spatially explicit ecosystem model developed in Ecopath with Ecosim. We then use these to investigate potential trade-offs associated with adopting different MPA management strategies. Limited-take MPAs, which restrict the use of some fishing gears, could have positive benefits for conservation and fisheries in the eastern English Channel, even though they generally receive far less attention in research on MPA network design. Our findings, however, also clearly indicate that no-take MPAs should form an integral component of proposed MPA networks in the eastern English Channel, as they not only result in substantial increases in ecosystem biomass, fisheries catches and the biomass of commercially valuable target species, but are fundamental to maintaining the sustainability of the fisheries. Synthesis and applications. Using the existing software tools Marxan with Zones and Ecopath with Ecosim in combination provides a powerful policy-screening approach. This could help inform marine spatial planning by identifying potential conflicts and by designing new regulations that better balance conservation objectives and stakeholder interests. In addition, it highlights that appropriate combinations of no-take and limited-take marine protected areas might be the most effective when making trade-offs between long-term ecological benefits and short-term political acceptability.
Resumo:
A moratorium on further bivalve leasing was established in 1999–2000 in Prince Edward Island (Canada). Recently, a marine spatial planning process was initiated explore potential mussel culture expansion in Malpeque Bay. This study focuses on the effects of a projected expansion scenario on productivity of existing leases and available suspended food resources. The aim is to provide a robust scientific assessment using available datasets and three modelling approaches ranging in complexity: (1) a connectivity analysis among culture areas; (2) a scenario analysis of organic seston dynamics based on a simplified biogeochemical model; and (3) a scenario analysis of phytoplankton dynamics based on an ecosystem model. These complementary approaches suggest (1) new leases can affect existing culture both through direct connectivity and through bay-scale effects driven by the overall increase in mussel biomass, and (2) a net reduction of phytoplankton within the bounds of its natural variation in the area.
Resumo:
Ecological network analysis was applied in the Seine estuary ecosystem, northern France, integrating ecological data from the years 1996 to 2002. The Ecopath with Ecosim (EwE) approach was used to model the trophic flows in 6 spatial compartments leading to 6 distinct EwE models: the navigation channel and the two channel flanks in the estuary proper, and 3 marine habitats in the eastern Seine Bay. Each model included 12 consumer groups, 2 primary producers, and one detritus group. Ecological network analysis was performed, including a set of indices, keystoneness, and trophic spectrum analysis to describe the contribution of the 6 habitats to the Seine estuary ecosystem functioning. Results showed that the two habitats with a functioning most related to a stressed state were the northern and central navigation channels, where building works and constant maritime traffic are considered major anthropogenic stressors. The strong top-down control highlighted in the other 4 habitats was not present in the central channel, showing instead (i) a change in keystone roles in the ecosystem towards sediment-based, lower trophic levels, and (ii) a higher system omnivory. The southern channel evidenced the highest system activity (total system throughput), the higher trophic specialisation (low system omnivory), and the lowest indication of stress (low cycling and relative redundancy). Marine habitats showed higher fish biomass proportions and higher transfer efficiencies per trophic levels than the estuarine habitats, with a transition area between the two that presented intermediate ecosystem structure. The modelling of separate habitats permitted disclosing each one's response to the different pressures, based on their a priori knowledge. Network indices, although non-monotonously, responded to these differences and seem a promising operational tool to define the ecological status of transitional water ecosystems.
Resumo:
Aim The spread of non-indigenous species in marine ecosystems world-wide is one of today's most serious environmental concerns. Using mechanistic modelling, we investigated how global change relates to the invasion of European coasts by a non-native marine invertebrate, the Pacific oyster Crassostrea gigas. Location Bourgneuf Bay on the French Atlantic coast was considered as the northern boundary of C. gigas expansion at the time of its introduction to Europe in the 1970s. From this latitudinal reference, variations in the spatial distribution of the C. gigas reproductive niche were analysed along the north-western European coast from Gibraltar to Norway. Methods The effects of environmental variations on C. gigas physiology and phenology were studied using a bioenergetics model based on Dynamic Energy Budget theory. The model was forced with environmental time series including in situ phytoplankton data, and satellite data of sea surface temperature and suspended particulate matter concentration. Results Simulation outputs were successfully validated against in situ oyster growth data. In Bourgneuf Bay, the rise in seawater temperature and phytoplankton concentration has increased C. gigas reproductive effort and led to precocious spawning periods since the 1960s. At the European scale, seawater temperature increase caused a drastic northward shift (1400 km within 30 years) in the C. gigas reproductive niche and optimal thermal conditions for early life stage development. Main conclusions We demonstrated that the poleward expansion of the invasive species C. gigas is related to global warming and increase in phytoplankton abundance. The combination of mechanistic bioenergetics modelling with in situ and satellite environmental data is a valuable framework for ecosystem studies. It offers a generic approach to analyse historical geographical shifts and to predict the biogeographical changes expected to occur in a climate-changing world.