4 resultados para Social carrying capacity
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
A spatially explicit coupled hydrodynamic-biogeochemical model was developed to study a coastal ecosystem under the combined effects of mussel aquaculture, nutrient loading and climate change. The model was applied to St Peter's Bay (SPB), Prince Edward Island, Eastern Canada. Approximately 40 % of the SPB area is dedicated to mussel (Mytilus edulis) longline culture. Results indicate that the two main food sources for mussels, phytoplankton and organic detritus, are most depleted in the central part of the embayment. Results also suggest that the system is near its ultimate capacity, a state where the energy cycle is restricted to nitrogen-phytoplankton-detritus-mussels with few resources left to be transferred to higher trophic levels. Annually, mussel meat harvesting extracts nitrogen (N) resources equivalent to 42 % of river inputs or 46.5 % of the net phytoplankton primary production. Under such extractive pressure, the phytoplankton biomass is being curtailed to 1980's levels when aquaculture was not yet developed and N loading was half the present level. Current mussel stocks also decrease bay-scale sedimentation rates by 14 %. Finally, a climate change scenario (year 2050) predicted a 30 % increase in mussel production, largely driven by more efficient utilization of the phytoplankton spring bloom. However, the predicted elevated summer temperatures (> 25 A degrees C) may also have deleterious physiological effects on mussels and possibly increase summer mortality levels. In conclusion, cultivated bivalves may play an important role in remediating the negative impacts of land-derived nutrient loading. Climate change may lead to increases in production and ecological carrying capacity as long as the cultivated species can tolerate warmer summer conditions.
Resumo:
A moratorium on further bivalve leasing was established in 1999–2000 in Prince Edward Island (Canada). Recently, a marine spatial planning process was initiated explore potential mussel culture expansion in Malpeque Bay. This study focuses on the effects of a projected expansion scenario on productivity of existing leases and available suspended food resources. The aim is to provide a robust scientific assessment using available datasets and three modelling approaches ranging in complexity: (1) a connectivity analysis among culture areas; (2) a scenario analysis of organic seston dynamics based on a simplified biogeochemical model; and (3) a scenario analysis of phytoplankton dynamics based on an ecosystem model. These complementary approaches suggest (1) new leases can affect existing culture both through direct connectivity and through bay-scale effects driven by the overall increase in mussel biomass, and (2) a net reduction of phytoplankton within the bounds of its natural variation in the area.
Resumo:
Markov Chain analysis was recently proposed to assess the time scales and preferential pathways into biological or physical networks by computing residence time, first passage time, rates of transfer between nodes and number of passages in a node. We propose to adapt an algorithm already published for simple systems to physical systems described with a high resolution hydrodynamic model. The method is applied to bays and estuaries on the Eastern Coast of Canada for their interest in shellfish aquaculture. Current velocities have been computed by using a 2 dimensional grid of elements and circulation patterns were summarized by averaging Eulerian flows between adjacent elements. Flows and volumes allow computing probabilities of transition between elements and to assess the average time needed by virtual particles to move from one element to another, the rate of transfer between two elements, and the average residence time of each system. We also combined transfer rates and times to assess the main pathways of virtual particles released in farmed areas and the potential influence of farmed areas on other areas. We suggest that Markov chain is complementary to other sets of ecological indicators proposed to analyse the interactions between farmed areas - e.g. depletion index, carrying capacity assessment. Markov Chain has several advantages with respect to the estimation of connectivity between pair of sites. It makes possible to estimate transfer rates and times at once in a very quick and efficient way, without the need to perform long term simulations of particle or tracer concentration.
Resumo:
1.This report presents the results of a field study conducted in the ECASA test site nOS in the Pertuis Breton, France. The site is located on the Atlantic West coasts. It is open to the bay of Biscay, but is slightly protected against westerly winds. The bay has been exploited by intertidal mussels culture for centuries. 2. Within the bay, mussels (Mytilus edulis) are cultivated either by the traditional pole technique, around the bay or on longlines in the centre of the bay. The area occupied by these longline s represents 250 ha, and the resulting annual production is 1 000 tonnes of mussels. The average depth at mid tide is of 13.8 m. The sediment is sandy, with a small fraction of mud. 3. The site is subject to several regular monitoring through the local implementation of national networks aiming at protecting the environment and marine resources, on pollutants (RNO), microbiological quality of the waters (REMI), phytoplanktonic toxic species (REPHY) and growth and mortality of molluscs (REMORA). Benthic macrofauna was studied in 1976. 4. Five sampling sations were chosen along a line, starting under the longlines, and at distances of 50, 100, 200, and 400 metres from the area cultivated. A reference station was chosen in a different direction at 2300 metres of the cultivated area. Sampling methods are described in the text. _Sediments were sampled for different analyses: grain size, content in organic matter, total organic carbon and nitrogen, and phytic pigments (chlorophyll a and phaeopigments). Redox were measured in cores. The macrofauna living into the sediment was also sampled. The water column was sampled for physical (temperature, transparency) and chemical parametres, including oxygen content, salinity, organic matter, dissolved nitrogen forms, phosphates and silicates. Results from benthic macrofauna surveys indicate that there were no significant differences between the different stations and the reference station, all being classified as slightly disturbed. The bay is submitted to freshwater runoffs from two adjacent rivers. 7. The sediment is slightly modified by the culture of bivalves. Total organic carbon, total nitrogen, Eh values and pheopigments were significantly higher under the trestles than in any other stations. Other stations often did not differ from the reference station. 8. The effects of shellfish culture on the water column were. However, it was observed a small decrease of the food available to the molluscs near the rearing 9. The DEB model was able to describe and predict adequately the growth of oysters, both in the Baie des Veys and in the Loch Creran. The parametres for its use in other environment are given, but a tuning of one parametre should be performed with the help of authors. 10. Among the indicators and models for use in are as of intertidal bivalve culture, it is recommended to use the sediment quality index, TOC (Total Organic Carbon), redox and pheopigments, in surficial sediment, AMBI for the macrofauna, chlorophyll a contents and nitrogen forms in the water column, and models describing the carrying capacity, filtration rate of molluscs, and a DEB model to predict the growth of molluscs.