4 resultados para Sleep–wake cycles

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is part of the program, "recruitment determinism in scallops" initiated in 1992 by the "Contrat de Baie". The aim of this research was to explain interannual abundance fluctuations observed for Pecten maximus, in the Bay of Brest. To this end an analytical approach to the life cycle of the species was undertaken to determine its critical phases. A phase may be considered as "critical" if the mortality rate at its level varies from one year to the other. Using data from 1989 to 1994, a precise time-table of the "physiological year" of the scallop in the Bay of Brest was determined. Fecundity and gamete production kinetics were estimated from the annual variation in the weight indices of the gonad. In the laboratory, egg quality was estimated following stimulated spawning of newly caught individuals. The digestive activity was estimated by amylase activity measurements during a three year period. Spawning lasts 6 months in the Bay of Brest from March to October. Spawning, muscle and digestive gland growths, are intimately linked to phytoplancton blooms. Gonad production shows a maximum in April-May, and two relative minima in Match and November. These results, which provide detailed understanding of the adult's annual cycle in the Bay of Brest, will be used to interpret the relationship between the annual cycle and larval and post larval abundance and survival. Already, these results are being used to improve spat production in hatcheries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents an assessment of the contributions of various primary producers to the global annual production and N/P cycles of a coastal system, namely the Arcachon Bay, by means of a numerical model. This 3D model fully couples hydrodynamic with ecological processes and simulates nitrogen, silicon and phosphorus cycles as well as phytoplankton, macroalgae and seagrasses. Total annual production rates for the different components were calculated for different years (2005, 2007 and 2009) during a time period of drastic reduction in seagrass beds since 2005. The total demand of nitrogen and phosphorus was also calculated and discussed with regards to the riverine inputs. Moreover, this study presents the first estimation of particulate organic carbon export to the adjacent open ocean. The calculated annual net production for the Arcachon Bay (except microphytobenthos, not included in the model) ranges between 22,850 and 35,300 tons of carbon. The main producers are seagrasses in all the years considered with a contribution ranging from 56% to 81% of global production. According to our model, the -30% reduction in seagrass bed surface between 2005 and 2007, led to an approximate 55% reduction in seagrass production, while during the same period of time, macroalgae and phytoplankton enhanced their productions by about +83% and +46% respectively. Nonetheless, the phytoplankton production remains about eightfold higher than the macroalgae production. Our results also highlight the importance of remineralisation inside the Bay, since riverine inputs only fulfill at maximum 73% nitrogen and 13% phosphorus demands during the years 2005, 2007 and 2009. Calculated advection allowed a rough estimate of the organic matter export: about 10% of the total production in the bay was exported, originating mainly from the seagrass compartment, since most of the labile organic matter was remineralised inside the bay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the general framework of an ecological model of the English Channel. The model is a result of combining a physical sub-model with a biological one. in the physical submodel, the Channel is divided into 71 boxes and water fluxes between them are calculated automatically. A 2-layer, vertical thermohaline model was then linked with the horizontal circulation scheme. This physical sub-model exhibits thermal stratification in the western Channel during spring and summer and haline stratification in the Bay of Seine due to high flow rates from the river. The biological sub-model takes 2 elements, nitrogen and silicon, into account and divides phytoplankton into diatoms and dinoflagellates. Results from this ecological model emphasize the influence of stratification on chlorophyll a concentrations as well as on primary production. Stratified waters appear to be much less productive than well-mixed ones. Nevertheless, when simulated production values are compared with literature data, calculated production is shown to be underestimated. This could be attributed to a lack of refinement of the 2-layer box-model or processes omitted from the biological model, such as production by nanoplankton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general framework for an ecological model of the English Channel was described in the first of this pair of papers. In this study, it was used to investigate the sensitivity of the model to various factors: model structure, parameter values, boundary conditions and forcing variables. These sensitivity analyses show how important quota formulation for phytoplankton growth is, particularly for growth of dinoflagellates. They also stress the major influence of variables and parameters related to nitrogen. The role played by rivers and particularly the river Seine was investigated. Their influence on global English Channel phytoplanktonic production seems to be relatively low, even though nutrient inputs determine the intensity of blooms in the Bay of Seine. The geographical position of the river Seine's estuary makes it important in fluxes through the Straits of Dover. Finally, the multi-annual study highlights the general stability of the English Channel ecosystem. These global considerations are discussed and further improvements to the model are proposed.