11 resultados para Shrimp pondeffluents
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
In New Caledonia barren salt-pans located landward to mangroves are used for the construction of shrimp ponds. The existing farms are jeopardized by the projected rise in the sea level, because the landward boundaries of ponds are situated at the elevation reached by spring tides. One low-cost strategy for mitigating the effects of sea level rise is to raise the level of the bottom of ponds. To test the effectiveness of such an adaptation, we built 4 experimental ponds in the low-lying zone of an existing 10 ha shrimp pond. The level of the bottom of 2 ponds was raised by adding about 15 cm of agricultural soil. Placing agricultural soil in the pond did not impair the functioning of the shrimp pond ecosystem. On the contrary, it resulted in unexpectedly better shrimp production in the 2 ponds with agricultural soils versus control ponds. We conclude that placing a layer of soil inside shrimp ponds is a promising strategy for maintaining the viability of shrimp ponds as the sea level rises.
Resumo:
This study compares the antioxidant and antimicrobial transcriptional expression of blue shrimps reared according to two different systems, BioFloc Technology (BFT) and Clear sea Water (CW) and their differential responses when facing an experimental sublethal hydrogen peroxide stress. After 30 days of rearing, juvenile shrimps were exposed to H2O2 stress at a concentration of 30 ppm during 6 hours. The oxidative stress caused by H2O2 was examined in the digestive glands of the shrimp, in which antioxidant enzyme (AOE) and antimicrobial peptide (AMP) gene expression were analysed by quantitative real-time PCR. Results showed that rearing conditions did not affect the expression of genes encoding AOEs or AMPs. However, H2O2 stress induced a differential response in expression between shrimps from the two rearing treatments (BFT and CW). Comparative analysis of the expression profiles indicates that catalase transcripts were significantly upregulated by H2O2 stress for BFT shrimps while no change was observed for CW shrimps. In contrast, H2O2 caused down-regulation of superoxide dismutase and glutathione transferase transcripts and of the three AMP transcripts studied (penaeidin 2 and 3, and crustin) for CW shrimps, while no effect was observed on BFT shrimp transcript levels. These results suggested that BFT shrimps maintained antioxidant and AMP responses after stress and therefore can effectively protect their cells against oxidative stress, while CW shrimp immune competence seems to decrease after stress.
Resumo:
The aim of this study was to assess the relative contribution of natural productivity and compound food to the growth of the juvenile blue shrimp Litopenaeus stylirostris reared in a biofloc system. Two experiments were carried out based on the same protocol with three treatments: clear water with experimental diet (CW), biofloc with experimental diet (BF) and biofloc unfed (BU). Shrimp survival was significantly higher in biofloc rearing than in CW rearing. The contribution of the biofloc to shrimp diet was estimated through measurement of carbon and nitrogen stable isotope ratios in shrimp and food sources. Different isotopic compositions between feeds were obtained by feeding natural productivity with a mixture rich in fish meal and the shrimps with a pellet containing a high level of soy protein concentrate. Using a two source one-isotope mixing model, we found that the natural productivity of the biofloc system contributed to shrimp growth at a level of 39.8% and 36.9%, for C and N, respectively. The natural food consumed by the shrimps reared in the biofloc system resulted in higher gene expression (mRNA transcript abundance) and activities of two digestive enzymes in their digestive gland: α-amylase and trypsin. The growth of shrimp biomass reared in biofloc was, on average, 4.4 times that of those grown in clear water. Our results confirmed the best survival and promoted growth of shrimps using biofloc technology and highlighted the key role of the biofloc in the nutrition of rearing shrimps. Statement of relevance In this study, we have applied an original protocol to determine the respective contribution of natural productivity and artificial feeds on the alimentation of the juvenile blue shrimp L. stylirostris reared in biofloc system by using C and N natural stable isotope analysis. Moreover, we have compared, in shrimp digestive gland, the α-amylase and trypsin enzyme activities at biochemical and molecular levels for two different shrimp rearing systems, biofloc and clear water. In our knowledge, the use of molecular tool to study the influence of biofloc consumption on digest process of shrimp was never carried out. We think that our research is new and important to increase knowledge on biofloc topic.
Resumo:
The aim of this study was to determine biofloc contributions to the antioxidant status and lipid nutrition of broodstock of Litopenaeus stylirostris in relationship with their reproductive performance and the health of larvae produced. Shrimp broodstock reared with Biofloc technology (BFT) compared to Clear water (CW) exhibited a higher health status with (i) a better final survival rate during the reproduction period (52.6% in CW against 79.8% in BFT); (ii) higher glutathione level (GSH) and total antioxidant status (TAS), reduced oxidized/reduced glutathione ratio and a higher spawning rate and frequency as well as higher gonado-somatic index and number of spawned eggs. Finally, larvae from broodstock from BFT exhibited higher survival rates at the Zoe 2 (+ 37%) and Post Larvae 1 (+ 51%) stages when compared with those from females from CW treatment. The improved reproductive performance of the broodstock and higher larvae survival rate resulting from BFT treatment may be linked to the dietary supplement obtained by the shrimp from natural productivity during BFT rearing. Indeed, our study confirms that biofloc particulates represent a potential source of dietary glutathione and a significant source of lipids, particularly essential phospholipids and n-3 highly unsaturated fatty acids (HUFA) for shrimps. Thus, broodstock from BFT treatment accumulated phospholipids, n-3 HUFA and arachidonic acid, which are necessary for vitellogenesis, embryogenesis and pre-feeding larval development. The predominant essential fatty acids, arachidonic acid (ARA), eicopentaeonic acid (EPA) and docosahexaenoic acid (DHA), had levels in the eggs that were, respectively, 2.5, 2.8 and 3 fold higher for BFT compared to the CW treatment. Statement of Relevance Today, the influence of biofloc technology on shrimp broodstock is not enough described and no information was available on the larvae quality. Moreover, two key pieces of new information emerge from the present study. Firstly, biofloc is a source of further dietary lipids that can act as energetic substrates, but also as a source of phospholipids and essential fatty acids necessary to sustain reproduction, embryonic and larval development. Second, improving the reproduction of the broodstock also leads to an improvement in the quality of the larvae. We think that our research is new and important to increase knowledge on biofloc topic. We believe the paper will contribute to the development of more efficient and therefore more sustainable systems.
Resumo:
We describe a one-step bio-refinery process for shrimp composites by-products. Its originality lies in a simple rapid (6 h) biotechnological cuticle fragmentation process that recovers all major compounds (chitins, peptides and minerals in particular calcium). The process consists of a controlled exogenous enzymatic proteolysis in a food-grade acidic medium allowing chitin purification (solid phase), and recovery of peptides and minerals (liquid phase). At a pH of between 3.5 and 4, protease activity is effective, and peptides are preserved. Solid phase demineralization kinetics were followed for phosphoric, hydrochloric, acetic, formic and citric acids with pKa ranging from 2.1 to 4.76. Formic acid met the initial aim of (i) 99 % of demineralization yield and (ii) 95 % deproteinization yield at a pH close to 3.5 and a molar ratio of 1.5. The proposed one-step process is proven to be efficient. To formalize the necessary elements for the future optimization of the process, two models to predict shell demineralization kinetics were studied, one based on simplified physical considerations and a second empirical one. The first model did not accurately describe the kinetics for times exceeding 30 minutes, the empirical one performed adequately.
Resumo:
Mirocaris fortunata were sampled from the Lucky Strike hydrothermal vent area (Eiffel Tower site) on the mid-Atlantic ridge during the French DIVA 2 cruise (June 1994). Small adults (17 to 22 mm total length), although morphologically identical, could be divided into 2 categories on the basis of pigmentation, lipid composition and C-13/C-12 stable isotope ratios of fatty acids. Highly pigmented small adults (8.6 to 9.2 mu g carotenoid shrimp(-1)) contained higher levels of total lipid than similar-sized individuals containing lower levels of pigment (0.9 to 2.9 mu g carotenoid shrimp(-1)). Lipid class analysis indicated that wax esters comprised 62.5% of total lipid in the former group. These pigmented shrimp also contained high proportions of polyunsaturated fatty acids (PUFA), particularly the phototrophic microplanktonic markers 20:5(n-3) and 22:6(n-3) (14.0 and 33.5% respectively). By contrast small adults (22 mm) and adult shrimp (25 to 26 mm) with low levels of carotenoid pigmentation contained lower amounts of total lipid, little or no wax ester and low levels of 20:5(n-3) and 22:6(n-3), but did contain 16:2(n-4) and 18:2(n-4) and the non-methylene interrupted dienes 20:2 Delta 5,13 and 22:2 Delta 7,15. GC-IRMS analysis of all fatty acids and fatty alcohols in the pigmented small adults indicated delta(13)C values of -18.2 to -27.7 parts per thousand, which is consistent with a photosynthetic carbon source for these compounds. The C-13/C-12 isotope composition of fatty acids from low-pigmented small adults and adults was more variable (-12.5 to -33.1 parts per thousand) and suggests a bimodal distribution which may be attributable to differing nutritional sources or the physiological/reproductive status of these shrimp. Samples of eggs, which are carried by the female on the pleopods, represented approximately 57% of total somatic lipid which indicates a substantial reproductive investment by this species. The egg lipids comprised high proportions of triacylglycerols (64.4 to 78.0% of total lipid) whilst the fatty acid composition was dominated by the monounsaturated fatty acids 16:1(n-7), 18:1(n-7) and 18:1(n-9), which accounted for 65.7 to 33.5% of total fatty acids. By contrast, PUFA were relatively minor components of egg lipids, particularly 20:5(n-3) and 22:6(n-3), which accounted for only 1.1 and 2.9% of total egg fatty acids respectively. This indicates that the reproductive investment by this species is supported mainly by material derived from bacterial chemosynthesis. The potential for M. fortunata hedge betting by producing larvae which either metamorphose at the vent site or adopt a bathypelagic lifestyle and delay metamorphosis to facilitate more widespread dispersal is discussed.
Resumo:
Background Biofloc technology (BFT), a rearing method with little or no water exchange, is gaining popularity in aquaculture. In the water column, such systems develop conglomerates of microbes, algae and protozoa, together with detritus and dead organic particles. The intensive microbial community presents in these systems can be used as a pond water quality treatment system, and the microbial protein can serve as a feed additive. The current problem with BFT is the difficulty of controlling its bacterial community composition for both optimal water quality and optimal shrimp health. The main objective of the present study was to investigate microbial diversity of samples obtained from different culture environments (Biofloc technology and clear seawater) as well as from the intestines of shrimp reared in both environments through high-throughput sequencing technology. Results Analyses of the bacterial community identified in water from BFT and “clear seawater” (CW) systems (control) containing the shrimp Litopenaeus stylirostris revealed large differences in the frequency distribution of operational taxonomic units (OTUs). Four out of the five most dominant bacterial communities were different in both culture methods. Bacteria found in great abundance in BFT have two principal characteristics: the need for an organic substrate or nitrogen sources to grow and the capacity to attach to surfaces and co-aggregate. A correlation was found between bacteria groups and physicochemical and biological parameters measured in rearing tanks. Moreover, rearing-water bacterial communities influenced the microbiota of shrimp. Indeed, the biofloc environment modified the shrimp intestine microbiota, as the low level (27 %) of similarity between intestinal bacterial communities from the two treatments. Conclusion This study provides the first information describing the complex biofloc microbial community, which can help to understand the environment-microbiota-host relationship in this rearing system.
Resumo:
Seasonal pathologies reduce the profitability and sustainability of the shrimp-farming industry in New Caledonia. A study was therefore conducted to estimate the effects of polyculture of blue shrimp with goldline rabbitfish or mullet on production performance and environmental quality. The fish did not affect shrimp production, and the combined shrimp/fish yields were significantly greater than the yield from shrimp monoculture. Changes in environmental quality in all treatments were few and minor throughout the culture period.