3 resultados para Serranid Fishes
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
A better understanding of the key ecological processes of marine organisms is fundamental to improving design and effective implementation of marine protected areas (MPAs) and marine biodiversity. The movement behavior of coral reef fish is a complex mechanism that is highly linked to species life-history traits, predation risk and food resources. We used passive acoustic telemetry to study monthly, daily and hourly movement patterns and space use in two species, Schoolmaster snapper (Lutjanus apodus) and Stoplight parrotfish (Sparisoma viride). We investigated the spatial overlap between the two species and compared intra-specific spatial overlap between day and night. Presence-absence models showed different diel presence and habitat use patterns between the two species. We constructed a spatial network of the movement patterns, which showed that for both species when fish were detected by the array of receivers most movements were made around the coral reef habitat while occasionally moving to silt habitats. Our results show that most individuals made predictable daily crepuscular migrations between different locations and habitat types, although individual behavioral changes were observed for some individuals across time. Our study also highlights the necessity to consider multiple species during MPA implementation and to take into account the specific biological and ecological traits of each species. The low number of fish detected within the receiver array, as well as the intraspecific variability observed in this study, highlight the need to compare results across species and individuals to be used for MPA management.
Resumo:
Animal-associated microbiotas form complex communities, which are suspected to play crucial functions for their host fitness. However, the biodiversity of these communities, including their differences between host species and individuals, has been scarcely studied, especially in case of skin-associated communities. In addition, the intraindividual variability (i.e. between body parts) has never been assessed to date. The objective of this study was to characterize skin bacterial communities of two teleostean fish species, namely the European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata), using a high-throughput DNA sequencing method. In order to focus on intrinsic factors of host-associated bacterial community variability, individuals of the two species were raised in controlled conditions. Bacterial diversity was assessed using a set of four complementary indices, describing the taxonomic and phylogenetic facets of biodiversity and their respective composition (based on presence/absence data) and structure (based on species relative abundances) components. Variability of bacterial diversity was quantified at the interspecific, interindividual and intraindividual scales. We demonstrated that fish surfaces host highly diverse bacterial communities, whose composition was very different from that of surrounding bacterioplankton. This high total biodiversity of skin-associated communities was supported by the important variability, between host species, individuals and the different body parts (dorsal, anal, pectoral and caudal fins).
Resumo:
Small-scale spatial and temporal variability in animal abundance is an intrinsic characteristic of marine ecosystems but remains largely unknown for most animals, including coral reef fishes. In this study, we used a remote autonomous unbaited video system and recorded reef fish assemblages during daylight hours, 10 times a day for 34 consecutive days in a branching coral patch of the lagoon of New Caledonia. In total, 50 031 fish observations belonging to 114 taxa, 66 genera and 31 families were recorded in 256 recorded videos. Carnivores and herbivore-detritus feeders dominated the trophic structure. We found significant variations in the composition of fish assemblages between times of day. Taxa richness and fish abundance were greater in the early morning and in the late afternoon than during the day. Fourteen taxa displayed well-defined temporal patterns in abundance with one taxon influenced by time of day, six influenced by tidal state and seven influenced by both time of day and tidal state. None of these 14 taxa were piscivores, 10 were herbivore-detritus feeders, three were carnivores and one was plankton feeder. Our results suggest a diel migration from feeding grounds to shelter areas and highlight the importance of taking into account small-scale temporal variability in animal diversity and abundance when studying connectivity between habitats and monitoring communities.