2 resultados para Secondary species and climactic species

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In French Polynesia, the aquaculture of P. margaritifera is carried out in numerous grow-out sites, located over three archipelagos (Gambier, Society and Tuamotu). To evaluate the impact of macro-geographical effects of these growing sites on pearl quality traits, five hatcheries produced families were used as homogeneous donor oysters in an experimental graft. The molluscs were then reared in two commercial locations: Tahaa island (Society) and Rangiroa atoll (Tuamotu). At harvest, eight pearl quality traits were recorded and compared: surface defects, lustre, grade, circles, shape categories, darkness level, body and secondary colour and visual colour categories. Overall inter-site comparison revealed that: 1) all traits were affected by grow-out location except for lustre and round shape, and 2) a higher mean rate of valuable pearls was produced in Rangiroa. Indeed, for pearl grade, Rangiroa showed twice as many A-B and less reject samples than Tahaa. This was related to the number of surface defects (grade component): in Rangiroa, twice as many pearls had no defects and less pearls had up to 10 defects. Concerning pearl shape, more circled and baroque pearls were found in Tahaa (+10%). For colour variation, 10% more pearls have an attractive green overtone in Rangiroa than in Tahaa, where more grey bodycolor were harvested. Lustre does not seem to be affected by these two culture site (except at a family scale). This is the first time P. margaritifera donor family have been shown to vary in the quality of pearls they produce depending on their grow-out location.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9 degrees 50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (RXAS) and X-ray diffraction (mu XRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe -bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of delta Fe-57 values up to 6 parts per thousand. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. These micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.