2 resultados para SUMMER MORTALITY
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Two oyster species are currently present along the French coasts : the indigenous European flat oyster (Ostrea edulis), and the Pacific cupped oyster (Crassostrea gigas), that has been introduced from Japan since the beginning of the 70ies. The flat oyster successively suffered from two protozoan diseases during the 60ies and its production decreased from 20 000 tons/year by that time to 1 500 tons/year nowadays. Consequently, the oyster production is principally (99%) based upon the Pacific oyster species with approximately 150 000 tons/year among which 90% are grown from the natural spat. However, the hatchery production of this species is developing and was estimated to 400 to 800 millions spat in 2002. Moreover, strengthened relationships between IFREMER and the 5 commercial hatcheries, that all joined the SYSAAF (Union of the French poultry, shellfish and fish farming selectors), allow to plan for new genetic breeding programs. At the end of the 80ies, IFREMER initiated a genetic breeding program for the resistance of the European flat oyster to the bonamiosis, and obtained strains more tolerant to this disease. After two generations of massal selection, molecular markers had identified a reduced genetic basis in this program. It was then reoriented to an intra-familial selection. However, we were confronted to a zootechnic problem to manage such a scheme and we compromised by an intra-cohorts of families selection scheme managed using molecular markers. The program has now reached the transfer level with experimentation at a professional scale. Concerning the Pacific cupped oyster, and in parallel with the obtaining and the study of polyploids, performance of different Asian cupped oyster strains were compared to the one introduced in France thirty years ago and currently suffering from summer mortalities. The local strain exhibited better performance, certainly based upon a good local adaptation. In other respects, although early growth is a relevant criteria for selection for growth to commercial stage, it is not to be privileged in the context of an oyster producing region with a limited food availability. Contrary, the spat summer mortality became a priority for numerous teams (genetic, physiology, pathology, ecology,...) joined in the MOREST program. The first results showed important survival differences between fullsib and halsib families. They indicate a genetic determinism to this character "survival" and promote for its selection.
Resumo:
A spatially explicit coupled hydrodynamic-biogeochemical model was developed to study a coastal ecosystem under the combined effects of mussel aquaculture, nutrient loading and climate change. The model was applied to St Peter's Bay (SPB), Prince Edward Island, Eastern Canada. Approximately 40 % of the SPB area is dedicated to mussel (Mytilus edulis) longline culture. Results indicate that the two main food sources for mussels, phytoplankton and organic detritus, are most depleted in the central part of the embayment. Results also suggest that the system is near its ultimate capacity, a state where the energy cycle is restricted to nitrogen-phytoplankton-detritus-mussels with few resources left to be transferred to higher trophic levels. Annually, mussel meat harvesting extracts nitrogen (N) resources equivalent to 42 % of river inputs or 46.5 % of the net phytoplankton primary production. Under such extractive pressure, the phytoplankton biomass is being curtailed to 1980's levels when aquaculture was not yet developed and N loading was half the present level. Current mussel stocks also decrease bay-scale sedimentation rates by 14 %. Finally, a climate change scenario (year 2050) predicted a 30 % increase in mussel production, largely driven by more efficient utilization of the phytoplankton spring bloom. However, the predicted elevated summer temperatures (> 25 A degrees C) may also have deleterious physiological effects on mussels and possibly increase summer mortality levels. In conclusion, cultivated bivalves may play an important role in remediating the negative impacts of land-derived nutrient loading. Climate change may lead to increases in production and ecological carrying capacity as long as the cultivated species can tolerate warmer summer conditions.