2 resultados para Right-Left Brake Balance.

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Retinitis pigmentosa 2 (RP2) gene is responsible for up to 20% of X-linked retinitis pigmentosa, a severe heterogeneous genetic disorder resulting in progressive retinal degeneration in humans. In vertebrates, several bodies of evidence have clearly established the role of Rp2 protein in cilia genesis and/or function. Unexpectedly, some observations in zebrafish have suggested the oocyte-predominant expression of the rp2 gene, a typical feature of maternal-effect genes. In the present study, we investigate the maternal inheritance of rp2 gene products in zebrafish eggs in order to address whether rp2 could be a novel maternal-effect gene required for normal development. Although both rp2 mRNA and corresponding protein are expressed during oogenesis, rp2 mRNA is maternally inherited, in contrast to Rp2 protein. A knockdown of the protein transcribed from both rp2 maternal and zygotic mRNA results in delayed epiboly and severe developmental defects, including eye malformations, that were not observed when only the protein from zygotic origin was knocked down. Moreover, the knockdown of maternal and zygotic Rp2 revealed a high incidence of left-right asymmetry establishment defects compared to only zygotic knockdown. Here we show that rp2 is a novel maternal-effect gene exclusively expressed in oocytes within the zebrafish ovary and demonstrate that maternal rp2 mRNA is essential for successful embryonic development and thus contributes to egg developmental competence. Our observations also reveal that Rp2 protein translated from maternal mRNA is important to allow normal heart loop formation, thus providing evidence of a direct maternal contribution to left-right asymmetry establishment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Otoliths are calcified structures located in Osteichthyes’ inner ear that are involved in audition and balance. Their morphology is used as an indicator of various ecological processes or properties. This application requires identifying the endogenous and exogenous factors that act simultaneously as sources of shape variation. This thesis aims at detecting and quantifying the relative contributions of directional asymmetry and diet to otolith shape variation at the intra-population level. Directional asymmetry between left and right otoliths was found in flat-fishes, the blind-side otolith being always longer and larger, whereas it was negligible in round-fishes. However, asymmetry amplitude never exceeded 18 %, which suggests evolutionary canalization of otolith shape symmetry. A correlation between global diet and otolith was detected in 4 species studied in situ. Diet composition contributed more than food amount to morphological variation and affected otolith shape both globally and locally. An experimental study on sea bass (Dicentrarchus larbrax) showed that diet composition in terms of essential polyunsaturated fatty acids at larval stage affects otolith morphogenesis during juvenile stage without impacting on individuals’ somatic growth. This result suggests a direct effect of diet on otolith shape and not an indirect one through the somatic-otolith growth relationship. This effect disappeared at later stages, morphogenetic trajectories converging back to a similar shape, which suggests ontogenetic canalization of otolith shape.