3 resultados para RIFT
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
The sedimentary architecture of basins and passive margins is determined by a complex interaction of parameters, including subsidence, eustasy, and sediment supply. A quantification of the post-rift (20 Ma-0 Ma) vertical movements of the Gulf of Lion (West Mediterranean) is proposed here based on the stratigraphic study of sedimentary paleomarkers using a large 3D grid of reflection seismic data, correlations with existing drillings, and refraction data. Post-rift subsidence was measured by the direct use of sedimentary geometries analysed in 3D and validated by numerical stratigraphic modelling. Three domains of subsidence were found: on the continental shelf and slope, subsidence corresponds to a seaward tilting with different amplitudes, whereas the deep basin subsides purely vertically. We show that these domains fit with the deeper crustal domains highlighted by previous geophysical data, and that post-break-up subsidence follows the initial hinge lines of the rifting phase. Subsidence rates are quantified on each domain for each stratigraphic interval. At a constant distance from the rotational hinge line, the Plio-Quaternary subsidence rate is constant on the shelf overall. Conversely, Miocene subsidence rates are very different on the eastern and western shelves. Stratigraphic simulations focused on the Messinian salinity crisis (MSC) were also performed. Their results are discussed together with our post-rift subsidence estimates in order to provide ideas and hypotheses for future detailed quantifications of Miocene subsidence, including isostatic readjustments linked to the MSC.
Resumo:
The temperature of the mantle and the rate of melt production are parameters which play important roles in controlling the style of crustal accretion along mid-ocean ridges. To investigate the variability in crustal accretion that develops in response to variations in mantle temperature, we have conducted a geophysical investigation of the Southeast Indian Ridge (SEIR) between the Amsterdam hotspot and the Australian-Antarctic Discordance (88 degrees E-118 degrees E). The spreading center deepens by 2100 m from west to east within the study area. Despite a uniform, intermediate spreading rate (69-75 mm yr-l), the SEIR exhibits the range in axial morphology displayed by the East Pacific Rise and the Mid-Atlantic Ridge (MAR) and usually associated with variations in spreading rate. The spreading center is characterized by an axial high west of 102 degrees 45'E, whereas an axial valley is prevalent east of this longitude. Both the deepening of the ridge axis and the general evolution of axial morphology from an axial high to a rift valley are not uniform. A region of intermediate morphology separates axial highs and MAR-like rift valleys. Local transitions in axial morphology occur in three areas along the ridge axis. The increase in axial depth toward the Australian-Antarctic Discordance may be explained by the thinning of the oceanic crust by similar to 4 km and the change in axial topography. The long-wavelength changes observed along the SEIR can be attributed to a gradient in mantle temperature between regions influenced by the Amsterdam and Kerguelen hot spots and the Australian-Antarctic Discordance. However, local processes, perhaps associated with an heterogeneous mantle or along-axis asthenospheric flow, may give rise to local transitions in axial topography and depth anomalies.
Resumo:
Deep-sea hydrothermal-vent habitats are typically linear, discontinuous, and short-lived. Some of the vent fauna such as the endemic polychaete family Alvinellidae are thought to lack a planktotrophic larval stage and therefore not to broadcast-release their offspring. The genetic evidence points to exchanges on a scale that seems to contradict this type of reproductive pattern. However, the rift valley may topographically rectify the bottom currents, thereby facilitating the dispersal of propagules between active vent sites separated in some cases by 10s of kilometers or more along the ridge axis. A propagule flux model based on a matrix of intersite distances, long-term current-meter data, and information on the biology and ecology of Alvinellidae was developed to test this hypothesis. Calculations of the number of migrants exchanged between two populations per generation (N-m) allowed comparisons with estimates obtained from genetic studies. N, displays a logarithmic decrease with increasing dispersal duration and reaches the critical value of 1 after 8 d when the propagule Aux model was run in standard conditions. At most, propagule traveling time cannot reasonably exceed 15-30 d, according to the model, whereas reported distances between sites would require longer lasting dispersal abilities. Two nonexclusive explanations are proposed. First, some aspects of the biology of Alvinellidae have been overlooked and long-distance dispersal does occur. Second, such dispersal never occurs in Alvinellidae, but the spatial-temporal dynamics of vent sites over geological timescales allows short-range dispersal processes to maintain gene flow.