2 resultados para RFID system, Authentication, Indistinguishability, Traceability, Strong-Privacy
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Zinc stable isotopes measurements by MC-ICP-MS, validated by laboratory intercalibrations, were performed on wild oysters, suspended particles and filtered river/estuarine water samples to provide new constraints for the use of Zn isotopes as environmental tracers. The samples selected were representative of the long range (400 km) transport of metal (Zn, Cd, etc.) contamination from former Zn-refining activities at Decazeville (i.e. δ66Zn > 1 ‰) and its phasing out, recorded during 30 years in wild oysters from the Gironde Estuary mouth (RNO/ROCCH sample bank). The study also addresses additional anthropogenic sources (urban and viticulture) and focuses on geochemical reactivity of Zn in the turbidity gradient and the maximum turbidity zone (MTZ) of the fluvial Gironde Estuary. In this area, dissolved Zn showed a strong removal onto suspended particulate matter (SPM) and progressive enrichment in heavy isotopes with increasing SPM concentrations varying from δ66Zn = -0.02 ‰ at 2 mg/L to +0.90 ‰ at 1310 mg/L. These signatures were attributed to kinetically driven adsorption due to strongly increasing sorption sites in the turbidity gradient and MTZ of the estuary. Oysters from the estuary mouth, contaminated sediments from the Lot River and SPM entering the estuary showed parallel historical evolutions (1979-2010) for Zn/Cd ratios but not for δ66Zn values. Oysters had signatures varying from δ66Zn = 1.43 ‰ in 1983 to 1.18 ‰ in 2010 and were offset by δ66Zn = 0.6 - 0.7 ‰ compared to past (1988) and present SPM from the salinity gradient. Isotopic signatures in river-borne particles entering the Gironde Estuary under contrasting freshwater discharge regimes during 2003-2011 showed similar values (δ66Zn ≈ 0.35 ± 0.03 ‰; 1SD, n=15), i.e. they were neither related to former metal refining activities at least for the past decade nor clearly affected by other anthropogenic sources. Therefore, the Zn isotopic signatures in Gironde oysters reflect the geochemical reactivity of Zn in the estuary rather than signatures of past metallurgical contaminations in the watershed as recorded in contaminated river sediments. The study also shows that the isotopic composition of Zn is strongly fractionated by its geochemical reactivity in the Gironde Estuary, representative of meso-macrotidal estuarine systems.
Resumo:
Understanding the natural evolution of a river–delta–sea system is important to develop a strong scientific basis for efficient integrated management plans. The distribution of sediment fluxes is linked with the natural connection between sediment source areas situated in uplifting mountain chains and deposition in plains, deltas and, ultimately, in the capturing oceans and seas. The Danube River–western Black Sea is one of the most active European systems in terms of sediment re-distribution that poses significant societal challenges. We aim to derive the tectonic and sedimentological background of human-induced changes in this system and discuss their interplay. This is obtained by analysing the tectonic and associated vertical movements, the evolution of relevant basins and the key events affecting sediment routing and deposition. The analysis of the main source and sink areas is focused in particular on the Miocene evolution of the Carpatho-Balkanides, Dinarides and their sedimentary basins including the western Black Sea. The vertical movements of mountains chains created the main moments of basin connectivity observed in the Danube system. Their timing and effects are observed in sediments deposited in the vicinity of gateways, such as the transition between the Pannonian/Transylvanian and Dacian basins and between the Dacian Basin and western Black Sea. The results demonstrate the importance of understanding threshold conditions driving rapid basins connectivity changes superposed over the longer time scale of tectonic-induced vertical movements associated with background erosion and sedimentation. The spatial and temporal scale of such processes is contrastingly different and challenging. The long-term patterns interact with recent or anthropogenic induced modifications in the natural system and may result in rapid changes at threshold conditions that can be quantified and predicted. Their understanding is critical because of frequent occurrence during orogenic evolution, as commonly observed in the Mediterranean area and discussed elsewhere.