2 resultados para Process control -- Data processing

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document does NOT address the issue of oxygen data quality control (either real-time or delayed mode). As a preliminary step towards that goal, this document seeks to ensure that all countries deploying floats equipped with oxygen sensors document the data and metadata related to these floats properly. We produced this document in response to action item 14 from the AST-10 meeting in Hangzhou (March 22-23, 2009). Action item 14: Denis Gilbert to work with Taiyo Kobayashi and Virginie Thierry to ensure DACs are processing oxygen data according to recommendations. If the recommendations contained herein are followed, we will end up with a more uniform set of oxygen data within the Argo data system, allowing users to begin analysing not only their own oxygen data, but also those of others, in the true spirit of Argo data sharing. Indications provided in this document are valid as of the date of writing this document. It is very likely that changes in sensors, calibrations and conversions equations will occur in the future. Please contact V. Thierry (vthierry@ifremer.fr) for any inconsistencies or missing information. A dedicated webpage on the Argo Data Management website (www) contains all information regarding Argo oxygen data management : current and previous version of this cookbook, oxygen sensor manuals, calibration sheet examples, examples of matlab code to process oxygen data, test data, etc..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommendation for Oxygen Measurements from Argo Floats: Implementation of In-Air-Measurement Routine to Assure Highest Long-term Accuracy As Argo has entered its second decade and chemical/biological sensor technology is improving constantly, the marine biogeochemistry community is starting to embrace the successful Argo float program. An augmentation of the global float observatory, however, has to follow rather stringent constraints regarding sensor characteristics as well as data processing and quality control routines. Owing to the fairly advanced state of oxygen sensor technology and the high scientific value of oceanic oxygen measurements (Gruber et al., 2010), an expansion of the Argo core mission to routine oxygen measurements is perhaps the most mature and promising candidate (Freeland et al., 2010). In this context, SCOR Working Group 142 “Quality Control Procedures for Oxygen and Other Biogeochemical Sensors on Floats and Gliders” (www.scor-int.org/SCOR_WGs_WG142.htm) set out in 2014 to assess the current status of biogeochemical sensor technology with particular emphasis on float-readiness, develop pre- and post-deployment quality control metrics and procedures for oxygen sensors, and to disseminate procedures widely to ensure rapid adoption in the community.