2 resultados para Precipitation probabilities
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Sea state can influence the turbulent air–sea exchanges, especially the momentum flux, by modifying the sea-surface roughness. The high-resolution non-hydrostatic convection-permitting model MESO-NH is used here to investigate the impact of a more realistic representation of the waves on heavy precipitation during the Intense Observation Period (IOP) 16a of the first HyMeX Special Observation Period (SOP1). Several quasi-stationary mesoscale convective systems developed over the western Mediterranean region, two of them over the sea, and resulted in heavy precipitation on the French and Italian coasts on 26 October 2012. Three different bulk parametrizations are tested in this study: a reference case (NOWAV) without any wave effect, a parametrization taking into account theoretical wave effects (WAV) and a last one with realistic wave characteristics from the MFWAM analyses (WAM). Using a realistic wave representation in WAM significantly increases the roughness length and the friction velocity with respect to NOWAV and WAV. The three MESO-NH sensitivity experiments of the IOP16a show that this surface-roughness increase in WAM generates higher momentum fluxes and directly impacts the low-level dynamics of the atmosphere, with a slowdown of the 10 m wind, when and where the wind speed exceeds 10 m s−1 and the sea state differs from the idealized one. The turbulent heat fluxes are not significantly influenced by the waves, these fluxes being controlled by the moisture content rather than by the wind speed in the simulations. Although the convective activity is globally well reproduced by all the simulations, the difference in the low-level dynamics of the atmosphere influences the localization of the simulated heavy precipitation. Objective evaluation of the daily rainfall amount and of the 10 m wind speed against the observations confirms the positive impact of the realistic wave representation on this simulation of heavy precipitation.
Resumo:
The TOPEX/POSEIDON mission offers the first opportunity to observe rain cells over the ocean by a dual-frequency radar altimeter (TOPEX) and simultaneously observe their natural radiative properties by a three-frequency radiometer (TOPEX microwave radiometer (TMR)). This work is a feasibility study aimed at understanding the capability and potential of the active/passive TOPEX/TMR system for oceanic rainfall detection. On the basis of past experiences in rain flagging, a joint TOPEX/TMR rain probability index is proposed. This index integrates several advantages of the two sensors and provides a more reliable rain estimate than the radiometer alone. One year's TOPEX/TMR TMR data are used to test the performance of the index. The resulting rain frequency statistics show quantitative agreement with those obtained from the Comprehensive Ocean-Atmosphere Data Set (COADS) in the Intertropical Convergence Zone (ITCZ), while qualitative agreement is found for other regions of the world ocean. A recent finding that the latitudinal frequency of precipitation over the Southern Ocean increases steadily toward the Antarctic continent is confirmed by our result. Annual and seasonal precipitation maps are derived from the index. Notable features revealed include an overall similarity in rainfall pattern from the Pacific, the Atlantic, and the Indian Oceans and a general phase reversal between the two hemispheres, as well as a number of regional anomalies in terms of rain intensity. Comparisons with simultaneous Global Precipitation Climatology Project (GPCP) multisatellite precipitation rate and COADS rain climatology suggest that systematic differences also exist. One example is that the maximum rainfall in the ITCZ of the Indian Ocean appears to be more intensive and concentrated in our result compared to that of the GPCP. Another example is that the annual precipitation produced by TOPEX/TMR is constantly higher than those from GPCP and COADS in the extratropical regions of the northern hemisphere, especially in the northwest Pacific Ocean. Analyses of the seasonal variations of prominent rainy and dry zones in the tropics and subtropics show various behaviors such as systematic migration, expansion and contraction, merging and breakup, and pure intensity variations, The seasonality of regional features is largely influenced by local atmospheric events such as monsoon, storm, or snow activities. The results of this study suggest that TOPEX and its follow-on may serve as a complementary sensor to the special sensor microwave/imager in observing global oceanic precipitation.