2 resultados para Polymorphism (Crystallography)

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotavirus double-stranded RNA was detected directly in sewage treatment plant samples over a 1-year period by reverse transcription followed by PCR amplification of the VP7 gene and Southern blot hybridization. The presence of naturally occurring rotaviruses was demonstrated in 42% of raw sewage samples and in 67% of treated effluent samples, Amplified viral sequences were analyzed bg restriction enzymes. Ten different restriction profiles were characterized, most of which were found in treated effluent samples. A mixture of restriction profiles was observed in 75% of contaminated effluent samples, The profiles were compared with those obtained from human rotavirus isolates involved in infections in children from the same area (six different profiles were detected), Five identical viral sequences were detected in both environmental and clinical samples, Restriction profiles sere also compared io profiles from known genomic sequences of human and animal viruses. Both human and animal origins of rotavirus contamination of water seemed likely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 angstrom resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same 'double-psi beta-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs.