2 resultados para Plant stage of the development
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
The chemical factors (inorganic nitrogen, phosphate, silicic acid) that potentially or actually control primary production were determined for the Bay of Brest, France, a macrotidal ecosystem submitted to high-nitrate-loaded freshwater inputs (winter nitrate freshwater concentrations >700 mu M, Si:N molar ratio as low as 0.2, i.e. among the lowest ever published). Intensive data collection and observations were carried out from February 1993 to March 1994 to determine the variations of physical [salinity, temperature, photosynthetically active radiation (PAR), freshwater discharges] and chemical (oxygen and nutrients) parameters and their impacts on the phytoplankton cycle (fluorescence, pigments, primary production). With insufficient PAR the winter stocks of nutrients were almost nonutilized and the nitrate excess was exported to the adjacent ocean, due to rapid tidal exchange. By early April, a diatom-dominated spring bloom developed (chlorophyll a maximum = 7.7 mu g l(-1); primary production maximum = 2.34 g C m(-2) d(-1)) under high initial nutrient concentrations. Silicic acid was rapidly exhausted over the whole water column; it is inferred to be the primary limiting factor responsible for the collapse of the spring bloom by mid-May. Successive phytoplankton developments characterized the period of secondary blooms during summer and fall (successive surface chlorophyll a maxima = 3.5, 1.6, 1.8 and 1.0 mu g l(-1); primary production = 1.24, 1.18 and 0.35 g C m(-2) d(-1)). Those secondary blooms developed under lower nutrient concentrations, mostly originating from nutrient recycling. Until August, Si and P most likely limited primary production, whereas the last stage of the productive period in September seemed to be N limited instead, this being a period of total nitrate depletion in almost the whole water column. Si limitation of spring blooms has become a common feature in coastal ecosystems that receive freshwater inputs with Si:N molar ratios <1. The peculiarity of Si Limitation in the Bay of Brest is its extension through the summer period.
Resumo:
Marine Renewable Energy Conversion systems comprise wave energy and tidal stream converters as well as offshore-wind turbines for electrical generation. These technologies are currently at different stages of development but are mostly at the pre-commercial stage and require research to be undertaken at a series of scales along the path to commercialization. However each of these technologies also needs specific research infrastructures in order to conduct this research. The aim of the MARINET initiative is to coordinate research and development at all scales (small models through to prototype scales, from laboratories through to open sea tests) and to allow access for researchers and developers to infrastructures which are not available universally in Europe, including test facilities for components such as power take-off systems, grid integration, moorings and environmental monitoring so as to ensure a focusing of activities in this area. The initiative offers researchers and developers access to 45 research facilities as well as to the associated network of expertise at all scales in Offshore Marine Renewable Energy technology research and development. The aim of this paper is to present this MARINET initiative that was started in 2011, bringing together a network of 29 partners spread across twelve countries. Details of the MARINET Transnational Access (TA) program are presented, for which over 260 applications were received throughout the 5 official calls for proposals. In particular, statistics on applications and completed projects are presented which provide an overview of the global development progress of the different offshore renewable energy conversion technologies at a European level. It also provides a good overview of the current research activity, as well as evidence of the requirement for specialised research facilities, in this burgeoning field.