2 resultados para POLYAMIDE
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Influence of the nature of the twine on the codend selectivity: Reminder: During the “SELECT 12” campaign in April 1996, we demonstrated that the nature of the material used for the manufacture of the trawl codend has an influence on the selectivity. Results showed that the use of single twine made of polyamide in the codend was more selective on hake and Nephrops than single twine made of polyethylene. Nevertheless single twine made of polyamide codend loses “flexibility” with use and therefore a study should be done to investigate its impact on selectivity (fishermen do not often use this equipment: however this 150 mesh net is particularly selective and it would be premature to discard it). Influence of the diameter of the twine and the mesh number on the selectivity of codends: These results show the high variability of codend charactistics tested on hake. The parameters tested during this campaign - e.g., diameter of the twine and mesh number (length of codend) - influence the selectivity of codends. It seems that the capture volume and the length of the codend are essential for the selectivity, while the nature of the equipment is secondary. However each parameter should be investigated in a future campaign. Furthermore, any regulatory measure that would seek to suppress the use of double twine polyethylene codend would be premature. Perspective: further experiment should be considered with the standard polyamide codend of 32.5 mm. • An additional experiment with the 100 mesh and 65 mm polyethylene double twine test codend to determine the influence of the mesh number on the selectivity; • An additional experiment with the 100 mesh deep and 65 mm polyethylene double twine (4 mm diameter) test codend to determine the influence of the diameter of the twine on the selectivity.
Resumo:
The evaluation of the mesh opening stiffness of fishing nets is an important issue in assessing the selectivity of trawls. It appeared that a larger bending rigidity of twines decreases the mesh opening and could reduce the escapement of fish. Nevertheless, netting structure is complex. A netting is made up of braided twines made of polyethylene or polyamide. These twines are tied with non-symmetrical knots. Thus, these assemblies develop contact-friction interactions. Moreover, the netting can be subject to large deformation. In this study, we investigate the responses of netting samples to different types of solicitations. Samples are loaded and unloaded with creep and relaxation stages, with different boundary conditions. Then, two models have been developed: an analytical model and a finite element model. The last one was used to assess, with an inverse identification algorithm, the bending stiffness of twines. In this paper, experimental results and a model for netting structures made up of braided twines are presented. During dry forming of a composite, for example, the matrix is not present or not active, and relative sliding can occur between constitutive fibres. So an accurate modelling of the mechanical behaviour of fibrous material is necessary. This study offers experimental data which could permit to improve current models of contact-friction interactions [4], to validate models for large deformation analysis of fibrous materials [1] on a new experimental case, then to improve the evaluation of the mesh opening stiffness of a fishing net