6 resultados para Operational Oceanography
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Use of satellite observations for operational oceanography: recent achievements and future prospects
Resumo:
The paper gives an overview of the development of satellite oceanography over the past five years focusing on the most relevant issues for operational oceanography. Satellites provide key essential variables to constrain ocean models and/or serve downstream applications. New and improved satellite data sets have been developed and have directly improved the quality of operational products. The status of the satellite constellation for the last five years was, however, not optimal. Review of future missions shows clear progress and new research and development missions with a potentially large impact for operational oceanography should be demonstrated. Improvement of data assimilation techniques and developing synergetic use of high resolution satellite observations are important future priorities.
Resumo:
A comprehensive database of temperature, salinity and bio-chemical parameters in the Mediterranean and Black Sea has been constructed through comprehensive co-operation between the bordering countries. Statistical climatologies have been computed with all assembled and quality controlled data. The database, designed to initiate and validate prediction models, also represents a system to quality-check new incoming data produced by ocean observing systems.
Resumo:
Copernicus is a European system for monitoring the Earth. COPERNICUS-CMEMS products and services are meant to serve all marine applications: Marine resources, Maritime safety, Coastal and Marine Environment, Seasonal Forecast & Climate. The service is ambitious as the ocean is complex and many processes are involved, from physical oceanography, biology, geology, ocean-atmosphere fluxes, solar radiations, moon induced tides, anthropic activity. A multi-platform approach is essential, taking into account sea-level stations, coastal buoys, HF radars, river flows, drifting buoys, sea-mammal or fishes fitted with sensors, vessels, gliders, floats.
Resumo:
Operational approaches have been more and more widely developed and used for providing marine data and information services for different socio-economic sectors of the Blue Growth and to advance knowledge about the marine environment. The objective of operational oceanographic research is to develop and improve the efficiency, timeliness, robustness and product quality of this approach. This white paper aims to address key scientific challenges and research priorities for the development of operational oceanography in Europe for the next 5-10 years. Knowledge gaps and deficiencies are identified in relation to common scientific challenges in four EuroGOOS knowledge areas: European Ocean Observations, Modelling and Forecasting Technology, Coastal Operational Oceanography and Operational Ecology. The areas "European Ocean Observations" and "Modelling and Forecasting Technology" focus on the further advancement of the basic instruments and capacities for European operational oceanography, while "Coastal Operational Oceanography" and "Operational Ecology" aim at developing new operational approaches for the corresponding knowledge areas.
Resumo:
With the construction of operational oceanography systems, the need for real-time has become more and more important. A lot of work had been done in the past, within National Data Centres (NODC) and International Oceanographic Data and Information Exchange (IODE) to standardise delayed mode quality control procedures. Concerning such quality control procedures applicable in real-time (within hours to a maximum of a week from acquisition), which means automatically, some recommendations were set up for physical parameters but mainly within projects without consolidation with other initiatives. During the past ten years the EuroGOOS community has been working on such procedures within international programs such as Argo, OceanSites or GOSUD, or within EC projects such as Mersea, MFSTEP, FerryBox, ECOOP, and MyOcean. In collaboration with the FP7 SeaDataNet project that is standardizing the delayed mode quality control procedures in NODCs, and MyOcean GMES FP7 project that is standardizing near real time quality control procedures for operational oceanography purposes, the DATA-MEQ working group decided to put together this document to summarize the recommendations for near real-time QC procedures that they judged mature enough to be advertised and recommended to EuroGOOS.
Resumo:
significant amount of Expendable Bathythermograph (XBT) data has been collected in the Mediterranean Sea since 1999 in the framework of operational oceanography activities. The management and storage of such a volume of data poses significant challenges and opportunities. The SeaDataNet project, a pan-European infrastructure for marine data diffusion, provides a convenient way to avoid dispersion of these temperature vertical profiles and to facilitate access to a wider public. The XBT data flow, along with the recent improvements in the quality check procedures and the consistence of the available historical data set are described. The main features of SeaDataNet services and the advantage of using this system for long-term data archiving are presented. Finally, focus on the Ligurian Sea is included in order to provide an example of the kind of information and final products devoted to different users can be easily derived from the SeaDataNet web portal.