3 resultados para Numerical Wave Maker, Numerical Wave Tank, CFD
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
This work presents the analysis of wave and turbulence measurements collected at a tidal energy site. A new method is introduced to produce more consistent and rigorous estimations of the velocity fluctuations power spectral densities. An analytical function is further proposed to fit the observed spectra and could be input to the numerical models predicting power production and structural loading on tidal turbines. Another new approach is developed to correct for the effect of the Doppler noise on the high frequencies power spectral densities. The analysis of velocity time series combining wave and turbulent contributions demonstrates that the turbulent motions are coherent throughout the water column, rendering the wave coherence-based methods not applicable to our dataset. To avoid this problem, an alternative approach relying on the pressure data collected by the ADCP is introduced and shows appreciable improvement in the wave-turbulence separation.
Resumo:
As advances in numerical modelling techniques support the increased confidence in predictions from computer simulations, the need remains to have experimental verification built into the design process. This paper outlines the experimental investigation carried out on a shielded vertical axis turbine in a marine environment. The experiments consist of performance measurements and the use of particle image velocimetry on a small scale device in a marine current flume. The results demonstrate that the performance of the device can be modelled numerically; in particular, the results show that the numerical model used can correctly predict the increase in performance with Reynolds number.
Resumo:
This manuscript presents three approaches : analytical, experimental and numerical, to study the behaviour of a flexible membrane tidal energy converter. This technology, developed by the EEL Energy company, is based on periodic deformations of a pre-stressed flexible structure. Energy converters, located on each side of the device, are set into motion by the wave-like motion. In the analytical model, the membrane is represented by a linear beam model at one dimension and the flow by a 3 dimensions potential fluid. The fluid forces are evaluated by the elongated body theory. Energy is dissipated all over the length of the membrane. A 20th scale experimental prototype has been designed with micro-dampers to simulate the power take-off. Trials have allowed to validate the undulating membrane energy converter concept. A numerical model has been developed. Each element of the device is represented and the energy dissipation is done by dampers element with a damping law linear to damper velocity. Comparison of the three approaches validates their ability to represent the membrane behaviour without damping. The energy dissipation applied with the analytical model is clearly different from the two other models because of the location (where the energy is dissipated) and damping law. The two others show a similar behaviour and the same order of power take off repartition but value of power take off are underestimated by the numerical model. This three approaches have allowed to put forward key-parameters on which depend the behaviour of the membrane and the parametric study highlights the complementarity and the advantage of developing three approaches in parallel to answer industrial optimization problems. To make the link between trials in flume tank and sea trials, a 1/6th prototype has been built. To do so, the change of scale was studied. The behaviour of both prototypes is compared and differences could be explained by differences of boundary conditions and confinement effects. To evaluated membrane long-term behaviour at sea, a method of ageing accelerated by temperature and fatigue tests have been carried out on prototype materials samples submerged in sea water.