2 resultados para Next-generation sequencing
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Animal-associated microbiotas form complex communities, which are suspected to play crucial functions for their host fitness. However, the biodiversity of these communities, including their differences between host species and individuals, has been scarcely studied, especially in case of skin-associated communities. In addition, the intraindividual variability (i.e. between body parts) has never been assessed to date. The objective of this study was to characterize skin bacterial communities of two teleostean fish species, namely the European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata), using a high-throughput DNA sequencing method. In order to focus on intrinsic factors of host-associated bacterial community variability, individuals of the two species were raised in controlled conditions. Bacterial diversity was assessed using a set of four complementary indices, describing the taxonomic and phylogenetic facets of biodiversity and their respective composition (based on presence/absence data) and structure (based on species relative abundances) components. Variability of bacterial diversity was quantified at the interspecific, interindividual and intraindividual scales. We demonstrated that fish surfaces host highly diverse bacterial communities, whose composition was very different from that of surrounding bacterioplankton. This high total biodiversity of skin-associated communities was supported by the important variability, between host species, individuals and the different body parts (dorsal, anal, pectoral and caudal fins).
Resumo:
Global changes linked to increases in temperature and ocean acidification, but also to more direct anthropogenic influences such as aquaculture, have caused a worldwide increase in the reports of Vibrio-associated illnesses affecting humans and also animals such as shrimp and molluscs. Investigation of the emergence of Vibrio pathogenesis events requires the analysis of microbial evolution at the gene, genome and population levels, in order to identify genomic modifications linked to increased virulence, resistance and/or prevalence, or to recent host shift. From a more applied point of view, the elucidation of virulence mechanisms is a prerequisite to devising prophylactic methods to fight infectious agents. In comparison with human pathogens, fairly little is known about the requirements for virulence in vibrios pathogenic to animals. However, the advent of genome sequencing, especially next-generation technologies,the possibility of genetically manipulating most of the Vibrio strains, and the recent availability of standardised animals for experimental infections have now compensated for the considerable delay in advancement of the knowledge of non-model pathogens such as Vibrio and have led to new scientific questions.