4 resultados para New statistics for monitoring
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
To determine good ecological status and conservation of the Sub-Marine area of the Bay of Biscay, the implementation of a new rocky intertidal habitats monitoring is needed. A protocol has been adapted from the Brittany protocol for the water body FRFC11 "Basque coast" for the two indicators "intertidal macroalgae" and "subtidal macroalgae" under the Water Framework Directive to qualify the ecological. However no protocol has been validated for fauna in front of meridional characters of the benthic communities. Investigations carried out on macroalgae communities on intertidal area in WFD framework, since 2008, constitute an important working basis. This is the aim of the Bigorno project (Intertidal Biodiversity of the south of the Bay of Biscay and Observation for New search and Monitoring for decision support), financed by the Agency of Marine Protected Areas and the Departmental Council. To implement knowledge, a sampling protocol has been used in 2015 on the boulder fields of Guéthary. This site is part of Natura 2000 area "rocky Basque coast and offshore extension "It constitutes also a Znieff site and restricted fishing area. The sampling strategy considers the heterogeneity of substrates and the presence of intertidal microhabitats. Two main habitats are present: "mediolittoral rock in exposed area habitat" and "boulder fields". Habitat "intertidal pools and permanent ponds" is also present but, it is not investigated. Sampling effort is of 353 quadrats of 0.1 m², drawn randomly according to a spatially stratified sampling plan, defined by habitat and algal belts. Taxa identification and enumeration are done on each quadrat. The objective of this work is to expose results from data collected during 2015 sampling program. The importance of characterizing benthic fauna communities spatial distribution belonging to the Basque coast according to algal belts defines during the WDF survey was highlighted. Concurrently, indicators of biodiversity were studied.
Resumo:
The rocky Basque coast presents an interest both in terms of biogeography and its patrimonial situation, alongside its habitats, fauna and flora. The aim of the BIGORNO project (Intertidal Biodiversity of the south of the Bay of Biscay and Observation for New research and Monitoring for decision support), financed by the Agency of Marine Protected Areas (AAMP) and the Departmental Council (CD 64), is to respond to significant deficiencies on biocenosis in the southern marine subregion “Bay of Biscay”. Investigations carried out in the WFD, since 2008, constitute an important basis of work for integration of fauna. Field studies undertaken since 2015 consisting of a sampling design suited to the substrates heterogeneity and the presence of microhabitats were established on an intertidal area specifically on a "Boulder fields" habitat. Assessment was undertaken by sampling quadrats of 0.1 m² drawn randomly from a spatially stratified sampling plan. Our study aims for a better understanding of stratification of this habitat and allowed us to highligh tindicator taxa of the "Boulder fields" habitat. Functions included in the package indicspecies (CRAN) were used to conduct indicator species analysis and to assess the significance of the relationship between taxa or taxa combinations and the habitat. It is therefore possible to describe some species or species groups which are specific to boulder fields through the assessment of their functional traits and local biodiversity. These various analyses allow for a sustainable way of monitoring the Basque intertidal rocky shore.
Resumo:
The international Argo program, consisting of a global array of more than 3000 free-drifting profiling floats, has now been monitoring the upper 2000 meters of the ocean for several years. One of its main proposed evolutions is to be able to reach the deeper ocean in order to better observe and understand the key role of the deep ocean in the climate system. For this purpose, Ifremer has designed the new “Deep-Arvor” profiling float: it extends the current operational depth down to 4000 meters, and measures temperature and salinity for up to 150 cycles with CTD pumping continuously and 200 cycles in spot sampling mode. High resolution profiles (up to 2000 points) can be transmitted and data are delivered in near real time according to Argo requirements. Deep-Arvor can be deployed everywhere at sea without any pre-ballasting operation and its light weight (~ 26kg) makes its launching easy. Its design was done to target a cost effective solution. Predefined spots have been allocated to add an optional oxygen sensor and a connector for an extra sensor. Extensive laboratory tests were successful. The results of the first at sea experiments showed that the expected performances of the operational prototypes had been reached (i.e. to perform up to 150 cycles). Meanwhile, the industrialization phase was completed in order to manufacture the Deep-Arvor float for the pilot experiment in 2015. In this paper, we detail all the steps of the development work and present the results from the at sea experiments.
Resumo:
Small-scale spatial and temporal variability in animal abundance is an intrinsic characteristic of marine ecosystems but remains largely unknown for most animals, including coral reef fishes. In this study, we used a remote autonomous unbaited video system and recorded reef fish assemblages during daylight hours, 10 times a day for 34 consecutive days in a branching coral patch of the lagoon of New Caledonia. In total, 50 031 fish observations belonging to 114 taxa, 66 genera and 31 families were recorded in 256 recorded videos. Carnivores and herbivore-detritus feeders dominated the trophic structure. We found significant variations in the composition of fish assemblages between times of day. Taxa richness and fish abundance were greater in the early morning and in the late afternoon than during the day. Fourteen taxa displayed well-defined temporal patterns in abundance with one taxon influenced by time of day, six influenced by tidal state and seven influenced by both time of day and tidal state. None of these 14 taxa were piscivores, 10 were herbivore-detritus feeders, three were carnivores and one was plankton feeder. Our results suggest a diel migration from feeding grounds to shelter areas and highlight the importance of taking into account small-scale temporal variability in animal diversity and abundance when studying connectivity between habitats and monitoring communities.