2 resultados para Middle and upper Jurassic
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
New high-resolution seismic data complemented with bedrock samples allowed us to propose a revised geological map of the Bay of Seine and to better define the control by the geological substrate on the morphogenesis and evolution of the Seine River during Pleistocene times. The new data confirm previous works. The Bay of Seine can be divided into two geological parts: a Mesozoic monocline domain occupying most of the bay and a syncline domain, mostly Tertiary, in the north, at the transition with the Central English Channel area. The highlighting of Eocene synsedimentary deformations, marked by sliding blocks in the syncline domain, is one of the most original inputs of this new study in the Bay of Seine that underlines the significant role of the substrate on the formation of the Seine paleo-valley. In the monocline domain, three terraces, pre-Saalian, Saalian and Weischelian in age respectively, constitute the infill of the paleovalley, preferentially incised into the middle to upper Jurassic marl-dominated formations, and bounded to the north by the seaward extension of the Oxfordian cuesta. The three terraces are preserved only along the northern bank of the paleovalley, evidencing a NE-to-SW migration of the successive valleys during the Pleistocene. We assume this displacement results from the tectonic tilt of the Paris Basin western margin. In the North, the paleo-Seine is incised into the axis of the tertiary syncline, and comprises three fill terraces that are assumed to have similar ages than those of the terraces. The fill terrace pattern is associated to the subsiding character of this northern domain of the Bay of Seine.
Resumo:
The Pianosa Contourite Depositional System (CDS) is located in the Corsica Trough (Northern Tyrrhenian Sea), a confined basin dominated by mass transport and contour currents in the eastern flank and by turbidity currents in the western flank. The morphologic and stratigraphic characterisation of the Pianosa CDS is based on multibeam bathymetry, seismic reflection data (multi-channel high resolution mini GI gun, single-channel sparker and CHIRP), sediment cores and ADCP data. The Pianosa CDS is located at shallow to intermediate water depths (170 to 850 m water depth) and is formed under the influence of the Levantine Intermediate Water (LIW). It is 120 km long, has a maximum width of 10 km and is composed of different types of muddy sediment drifts: plastered drift, separated mounded drift, sigmoid drift and multicrested drift. The reduced tectonic activity in the Corsica Trough since the early Pliocene permits to recover a sedimentary record of the contourite depositional system that is only influenced by climate fluctuations. Contourites started to develop in the Middle-Late Pliocene, but their growth was enhanced since the Middle Pleistocene Transition (0.7–0.9 Ma). Although the general circulation of the LIW, flowing northwards in the Corsica Trough, remained active all along the history of the system, contourite drift formation changed, controlled by sediment influx and bottom current velocity. During periods of sea level fall, fast bottom currents often eroded the drift crest in the middle and upper slope. At that time the proximity of the coast to the shelf edge favoured the formation of bioclastic sand deposits winnowed by bottom currents. Higher sediment accumulation of mud in the drifts occurred during periods of fast bottom currents and high sediment availability (i.e. high activity of turbidity currents), coincident with periods of sea level low-stands. Condensed sections were formed during sea level high-stands, when bottom currents were more sluggish and the turbidite system was disconnected, resulting in a lower sediment influx.