4 resultados para Mediterranean-type ecosystems

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Mediterranean Sea constitutes a unique environment to study cold-seep ecosystems due to the presence of different geodynamic settings, from an active margin along the Mediterranean Ridge (MR) to a passive margin in the Nile Deep-Sea Fan (NDSF). We attempted to identify the structure of benthic communities associated with the Napoli and Amsterdam mud volcanoes (MVs) located on the MR and to establish the links between faunal distribution and environmental conditions at different spatial scales. Comparison between the 2 MVs revealed that the faunal distribution seemed to be mainly controlled by the characteristics of the microhabitats. On both geological structures, the variability between the different microhabitats was higher than the variability observed between replicates of the same microhabitat, and the distribution of macro-fauna was apparently linked to gradients in physico-chemical conditions. The peripheral sites from Napoli were generally more oxygenated and harboured lower species richness than the active sites. The reduced sediment microhabitat from Amsterdam presented the highest methane concentrations and was mainly colonised by symbiont-bearing vesicomyid bivalves and heterotrophic dorvilleid polychaetes. Overall, a higher taxonomic diversity was observed on Napoli. Sub-stratum type was hypothesised to be the second factor influencing faunal distribution. The results of this study highlight the high heterogeneity of faunal communities associated with seep ecosystems within this region and the need to pursue investigations at various spatial and temporal scales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examines the distribution, abundance and characteristics of surface micro- and mesoplastic debris in the Western Mediterranean Sea. 41 samples were collected in 2011 (summer) and 2012 (summer). Results, firstly, revealed that micro- (<5mm) and mesoplastic debris were widely and uniformly distributed in this area with average concentrations of 130,000 parts/km(2) and 5700 parts/km(2), respectively. Importantly, a strong correlation between micro- and mesoplastic concentrations was identified. Secondly, a classification based on the shape and appearance of microplastics indicated the predominant presence of fragments (73 %) followed by thin films (14 %). Thirdly, the average mass ratio of microplastic to dry organic matter has been measured at 0.5, revealing a significant presence of microplastics in comparison to plankton. Finally, a correction method was applied in order to correct wind mixing effect on microplastics' vertical distribution. This data allows for a comprehensive view, for the first time, of the spatial distribution and nature of plastic debris in the Western Mediterranean Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated with a projection and building confidence in its robustness. We review how uncertainties in such projections are handled in marine science. We employ an approach developed in climate modelling by breaking uncertainty down into (i) structural (model) uncertainty, (ii) initialization and internal variability uncertainty, (iii) parametric uncertainty, and (iv) scenario uncertainty. For each uncertainty type, we then examine the current state-of-the-art in assessing and quantifying its relative importance. We consider whether the marine scientific community has addressed these types of uncertainty sufficiently and highlight the opportunities and challenges associated with doing a better job. We find that even within a relatively small field such as marine science, there are substantial differences between subdisciplines in the degree of attention given to each type of uncertainty. We find that initialization uncertainty is rarely treated explicitly and reducing this type of uncertainty may deliver gains on the seasonal-to-decadal time-scale. We conclude that all parts of marine science could benefit from a greater exchange of ideas, particularly concerning such a universal problem such as the treatment of uncertainty. Finally, marine science should strive to reach the point where scenario uncertainty is the dominant uncertainty in our projections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

armful benthic dinoflagellates, usually developing in tropical areas, are expanding to temperate ecosystems facing water warming. Reports on harmful benthic species are particularly scarce in the Southern Mediterranean Sea. For the first time, three thermophilic benthic dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima and Coolia monotis) were isolated from Bizerte Bay (Tunisia, Mediterranean) and monoclonal cultures established. The ribotyping confirmed the morphological identification of the three species. Maximum growth rates were 0.59 ± 0.08 d−1 for O. cf. ovata, 0.35 ± 0.01 d−1 for C. monotis and 0.33 ± 0.04 d−1 for P. lima. Toxin analyses revealed the presence of ovatoxin-a and ovatoxin-b in O. cf. ovata cells. Okadaic acid and dinophysistoxin-1 were detected in P. lima cultures. For C. monotis, a chromatographic peak at 5.6 min with a mass m/z = 1061.768 was observed, but did not correspond to a mono-sulfated analogue of the yessotoxin. A comparison of the toxicity and growth characteristics of these dinoflagellates, distributed worldwide, is proposed.