3 resultados para Mass flow rates

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the general framework of an ecological model of the English Channel. The model is a result of combining a physical sub-model with a biological one. in the physical submodel, the Channel is divided into 71 boxes and water fluxes between them are calculated automatically. A 2-layer, vertical thermohaline model was then linked with the horizontal circulation scheme. This physical sub-model exhibits thermal stratification in the western Channel during spring and summer and haline stratification in the Bay of Seine due to high flow rates from the river. The biological sub-model takes 2 elements, nitrogen and silicon, into account and divides phytoplankton into diatoms and dinoflagellates. Results from this ecological model emphasize the influence of stratification on chlorophyll a concentrations as well as on primary production. Stratified waters appear to be much less productive than well-mixed ones. Nevertheless, when simulated production values are compared with literature data, calculated production is shown to be underestimated. This could be attributed to a lack of refinement of the 2-layer box-model or processes omitted from the biological model, such as production by nanoplankton.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time series of physico-chemical data and concentrations (cell L-1) of the toxic dinoflagellate Alexandrium minutum collected in the Rance macrotidal estuary (Brittany, France) were analyzed to understand the physico-chemical processes of the estuary and their relation to changes in bloom development from 1996 to 2009. The construction of the tidal power plant in the north and the presence of a lock in the south have greatly altered hydrodynamics, blocking the zone of maximum turbidity upstream, in the narrowest part of the estuary. Alexandrium minutum occurs in the middle part of the estuary. Most physical and chemical parameters of the Rance estuary are similar to those observed elsewhere in Brittany with water temperatures between 15–18 °C, slightly lowered salinities (31.8–33.1 PSU), low river flow rates upstream and significant solar radiation (8 h day-1). A notable exception is phosphate input from the drainage basin which seems to limit bloom development: in recent years, bloom decline can be significantly correlated with the decrease in phosphate input. On the other hand, the chemical processes occurring in the freshwater-saltwater interface do not seem to have an influence on these occurrences. The other hypotheses for bloom declines are discussed, including the prevalence of parasitism, but remain to be verified in further studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stainless steel is widely used in seawater reverse osmosis units (SWRO) for both good mechanical and corrosion resistance properties. However, many corrosion failures of stainless steel in SWRO desalination units have been reported. These failures may often be attributed to un-adapted stainless steel grade selection and/or to the particular aggressive seawater conditions in "warm" regions (high ambient temperature, severe biofouling, etc.). Cathodic protection (CP) is a well-known efficient system to prevent corrosion of metallic materials in seawater. It is successfully used in the oil and gas industry to protect carbon steel structures exposed in open-sea. However, the specific service conditions of SWRO units may seriously affect the efficiency of such anti-corrosion system (high flow rates, large stainless steel surfaces affected by biofouling, confinement limiting protective cathodic current flow, etc.). Hence, CP in SWRO units should be considered with special care and modeling appears as useful tool to assess an appropriate CP design. However, there is a clear lack of CP data that could be transposed to SWRO service conditions (i.e. stainless steel, effect of biofouling, high flow rate, etc.). From this background a Join Industry Program was initiated including laboratory exposures, field measurements in a full scale SWRO desalination plant, and modeling work using PROCOR software. The present paper reviews the main parameters affecting corrosion of stainless steel alloys in seawater reverse osmosis units. CP on specific stainless steel devices was investigated in order to assess its actual efficiency for SWRO units. Severe environmental conditions were intentionally used to promote corrosion on the tested stainless steel products in order to evaluate the efficiency of CP. The study includes a modeling work aiming at predicting and designing adapted CP protection to modeled stainless steel units. An excellent correlation between modeling work and field measurements was found.