12 resultados para Marine pelagic community

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For decades, global climate change has directly and indirectly affected the structure and function of ecosystems. Abrupt changes in biodiversity have been observed in response to linear or sudden modifications to the environment. These abrupt shifts can cause long-term reorganizations within ecosystems, with communities exhibiting new functional responses to environmental factors. Over the last 3 decades, the Gironde estuary in southwest France has experienced 2 abrupt shifts in both the physical and chemical environments and the pelagic community. Rather than describing these shifts and their origins, we focused on the 3 inter-shift periods, describing the structure of the fish community and its relationship with the environment during these periods. We described fish biodiversity using a limited set of descriptors, taking into account both species composition and relative species abundances. Inter-shift ecosystem states were defined based on the relationship between this description and the hydro-physico-chemical variables and climatic indices defining the main features of the environment. This relationship was described using generalized linear mixed models on the entire time series and for each inter-shift period. Our results indicate that (1) the fish community structure has been significantly modified, (2) environmental drivers influencing fish diversity have changed during these 3 periods, and (3) the fish-environment relationships have been modified over time. From this, we conclude a regime shift has occurred in the Gironde estuary. We also highlight that anthropogenic influences have increased, which re-emphasizes the importance of local management in maintaining fish diversity and associated goods and services within the context of climate change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated with a projection and building confidence in its robustness. We review how uncertainties in such projections are handled in marine science. We employ an approach developed in climate modelling by breaking uncertainty down into (i) structural (model) uncertainty, (ii) initialization and internal variability uncertainty, (iii) parametric uncertainty, and (iv) scenario uncertainty. For each uncertainty type, we then examine the current state-of-the-art in assessing and quantifying its relative importance. We consider whether the marine scientific community has addressed these types of uncertainty sufficiently and highlight the opportunities and challenges associated with doing a better job. We find that even within a relatively small field such as marine science, there are substantial differences between subdisciplines in the degree of attention given to each type of uncertainty. We find that initialization uncertainty is rarely treated explicitly and reducing this type of uncertainty may deliver gains on the seasonal-to-decadal time-scale. We conclude that all parts of marine science could benefit from a greater exchange of ideas, particularly concerning such a universal problem such as the treatment of uncertainty. Finally, marine science should strive to reach the point where scenario uncertainty is the dominant uncertainty in our projections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recommendation for Oxygen Measurements from Argo Floats: Implementation of In-Air-Measurement Routine to Assure Highest Long-term Accuracy As Argo has entered its second decade and chemical/biological sensor technology is improving constantly, the marine biogeochemistry community is starting to embrace the successful Argo float program. An augmentation of the global float observatory, however, has to follow rather stringent constraints regarding sensor characteristics as well as data processing and quality control routines. Owing to the fairly advanced state of oxygen sensor technology and the high scientific value of oceanic oxygen measurements (Gruber et al., 2010), an expansion of the Argo core mission to routine oxygen measurements is perhaps the most mature and promising candidate (Freeland et al., 2010). In this context, SCOR Working Group 142 “Quality Control Procedures for Oxygen and Other Biogeochemical Sensors on Floats and Gliders” (www.scor-int.org/SCOR_WGs_WG142.htm) set out in 2014 to assess the current status of biogeochemical sensor technology with particular emphasis on float-readiness, develop pre- and post-deployment quality control metrics and procedures for oxygen sensors, and to disseminate procedures widely to ensure rapid adoption in the community.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The marine diatom Haslea ostrearia produces a water-soluble blue-pigment named marennine of economic interest (e.g. in aquaculture for the greening of oysters). Up to date the studies devoted to ecological conditions under which this microalga develops never took into account the bacterial-H. ostrearia relationships. In this study the bacterial community was analysed by PCR-TTGE before and after H. ostrearia isolation cells recovered from 4 localities, to distinguish the relative part of the biotope and the biocenose and eventually to describe the temporal dynamic of the structure of the bacterial community. The bacterial structure of the phycosphere differed strongly from that of the bulk sediment. The similarity between bacteria recovered from the biofilm and the suspended bacteria did not exceed 10% (vs. > 90% amongst biofilms). The differences in genetic fingerprints, more especially high between two H. ostrearia isolates showed also the highest differences in the bacterial structure as the result of specific metabolomics profiles. The non-targeted metabolomic investigation showed that these profiles were more distinct in case of bacteria-alga associations than for the H. ostrearia monoculture. At the scale of a culture cycle in laboratory conditions, the bacterial community was specific to the growth stage. When H. ostrearia was subcultured for 9 months, a shift in the bacterial structure was shown from 3-months subculturing and the bacterial structure stabilized afterwards (70-86% similarities). A first insight of the relationships between H. ostrearia and its surrounding bacteria was shown for a better understanding of the ecological feature of this diatom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endogenous and environmental variables are fundamental in explaining variations in fish condition. Based on more than 20 yr of fish weight and length data, relative condition indices were computed for anchovy and sardine caught in the Gulf of Lions. Classification and regression trees (CART) were used to identify endogenous factors affecting fish condition, and to group years of similar condition. Both species showed a similar annual cycle with condition being minimal in February and maximal in July. CART identified 3 groups of years where the fish populations generally showed poor, average and good condition and within which condition differed between age classes but not according to sex. In particular, during the period of poor condition (mostly recent years), sardines older than 1 yr appeared to be more strongly affected than younger individuals. Time-series were analyzed using generalized linear models (GLMs) to examine the effects of oceanographic abiotic (temperature, Western Mediterranean Oscillation [WeMO] and Rhone outflow) and biotic (chlorophyll a and 6 plankton classes) factors on fish condition. The selected models explained 48 and 35% of the variance of anchovy and sardine condition, respectively. Sardine condition was negatively related to temperature but positively related to the WeMO and mesozooplankton and diatom concentrations. A positive effect of mesozooplankton and Rhone runoff on anchovy condition was detected. The importance of increasing temperatures and reduced water mixing in the NW Mediterranean Sea, affecting planktonic productivity and thus fish condition by bottom-up control processes, was highlighted by these results. Changes in plankton quality, quantity and phenology could lead to insufficient or inadequate food supply for both species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although protists are critical components of marine ecosystems, they are still poorly characterized. Here we analysed the taxonomic diversity of planktonic and benthic protist communities collected in six distant European coastal sites. Environmental deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from three size fractions (pico-, nano- and micro/mesoplankton), as well as from dissolved DNA and surface sediments were used as templates for tag pyrosequencing of the V4 region of the 18S ribosomal DNA. Beta-diversity analyses split the protist community structure into three main clusters: picoplankton-nanoplankton-dissolved DNA, micro/mesoplankton and sediments. Within each cluster, protist communities from the same site and time clustered together, while communities from the same site but different seasons were unrelated. Both DNA and RNA-based surveys provided similar relative abundances for most class-level taxonomic groups. Yet, particular groups were overrepresented in one of the two templates, such as marine alveolates (MALV)-I and MALV-II that were much more abundant in DNA surveys. Overall, the groups displaying the highest relative contribution were Dinophyceae, Diatomea, Ciliophora and Acantharia. Also, well represented were Mamiellophyceae, Cryptomonadales, marine alveolates and marine stramenopiles in the picoplankton, and Monadofilosa and basal Fungi in sediments. Our extensive and systematic sequencing of geographically separated sites provides the most comprehensive molecular description of coastal marine protist diversity to date.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examines the distribution, abundance and characteristics of surface micro- and mesoplastic debris in the Western Mediterranean Sea. 41 samples were collected in 2011 (summer) and 2012 (summer). Results, firstly, revealed that micro- (<5mm) and mesoplastic debris were widely and uniformly distributed in this area with average concentrations of 130,000 parts/km(2) and 5700 parts/km(2), respectively. Importantly, a strong correlation between micro- and mesoplastic concentrations was identified. Secondly, a classification based on the shape and appearance of microplastics indicated the predominant presence of fragments (73 %) followed by thin films (14 %). Thirdly, the average mass ratio of microplastic to dry organic matter has been measured at 0.5, revealing a significant presence of microplastics in comparison to plankton. Finally, a correction method was applied in order to correct wind mixing effect on microplastics' vertical distribution. This data allows for a comprehensive view, for the first time, of the spatial distribution and nature of plastic debris in the Western Mediterranean Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal-associated microbiotas form complex communities, which are suspected to play crucial functions for their host fitness. However, the biodiversity of these communities, including their differences between host species and individuals, has been scarcely studied, especially in case of skin-associated communities. In addition, the intraindividual variability (i.e. between body parts) has never been assessed to date. The objective of this study was to characterize skin bacterial communities of two teleostean fish species, namely the European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata), using a high-throughput DNA sequencing method. In order to focus on intrinsic factors of host-associated bacterial community variability, individuals of the two species were raised in controlled conditions. Bacterial diversity was assessed using a set of four complementary indices, describing the taxonomic and phylogenetic facets of biodiversity and their respective composition (based on presence/absence data) and structure (based on species relative abundances) components. Variability of bacterial diversity was quantified at the interspecific, interindividual and intraindividual scales. We demonstrated that fish surfaces host highly diverse bacterial communities, whose composition was very different from that of surrounding bacterioplankton. This high total biodiversity of skin-associated communities was supported by the important variability, between host species, individuals and the different body parts (dorsal, anal, pectoral and caudal fins).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Western Pacific hydrothermal vents will soon be subjected to deep-sea mining and peripheral sites are considered the most practical targets. The limited information on community dynamics and temporal change in these communities makes it difficult to anticipate the impact of mining activities and recovery trajectories. We studied community composition of peripheral communities along a cline in hydrothermal chemistry on the Eastern Lau Spreading Center and Valu Fa Ridge (ELSC-VFR) and also studied patterns of temporal change. Peripheral communities located in the northern vent fields of the ELSC-VFR are significantly different from those in the southern vent fields. Higher abundances of zoanthids and anemones were found in northern peripheral sites and the symbiont-containing mussel Bathymodiolus brevior, brisingid seastars and polynoids were only present in the northern peripheral sites. By contrast, certain faunal groups were seen only in the southern peripheral sites, such as lollipop sponges, pycnogonids and ophiuroids. Taxonomic richness of the peripheral communities was similar to that of active vent communities, due to the presence of non-vent endemic species that balanced the absence of species found in areas of active venting. The communities present at waning active sites resemble those of peripheral sites, indicating that peripheral species can colonize previously active vent sites in addition to settling in the periphery of areas of venting. Growth and mortality were observed in a number of the normally slow-growing cladorhizid stick sponges, indicating that these animals may exhibit life history strategies in the vicinity of vents that differ from those previously recorded. A novel facultative association between polynoids and anemones is proposed based on their correlated distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The marine diatom Haslea ostrearia [1] produces a water-soluble blue-pigment named marennine [2] of economic interest. But the lack of knowledge of the ecological conditions, under which this microalga develops in its natural ecosystem, more especially bacteria H. ostrearia interactions, prevents any optimization of its culture in well-controlled conditions. The structure of the bacterial community was analyzed by PCR-TTGE before and after the isolation of H. ostrearia cells recovered from 4 localities, to distinguish the relative part of the biotope and the biocenose and eventually to describe the temporal dynamic of the structure of the bacterial community at two time-scales. The differences in genetic fingerprints, more especially high between two H. ostrearia isolates (HO-R and HO-BM) showed also the highest differences in the bacterial structure [3] as the result of specific metabolomics profiles. The non-targeted metabolomic investigation showed that these profiles were more distinct in case of bacteria-alga associations than for the H. ostrearia monoculture Here we present a Q-TOF LC/MS metabolomic fingerprinting approach [3]: - to investigate differential metabolites of axenic versus non axenic H. ostrearia cultures. - to focus on the specific metabolites of a bacterial surrounding associated with the activation or inhibition of the microalga growing. The Agilent suite of data processing software makes feature finding, statistical analysis, and identification easier. This enables rapid transformation of complex raw data into biologically relevant metabolite information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The marine diatom Haslea ostrearia [1] produces a water-soluble blue-pigment named marennine [2] of economic interest. But the lack of knowledge of the ecological conditions, under which this microalga develops in its natural ecosystem, more especially bacteria H. ostrearia interactions, prevents any optimization of its culture in well-controlled conditions. The structure of the bacterial community was analyzed by PCR-TTGE before and after the isolation of H. ostrearia cells recovered from 4 localities, to distinguish the relative part of the biotope and the biocenose and eventually to describe the temporal dynamic of the structure of the bacterial community at two time-scales. The differences in genetic fingerprints, more especially high between two H. ostrearia isolates (HO-R and HO-BM) showed also the highest differences in the bacterial structure [3] as the result of specific metabolomics profiles. The non-targeted metabolomic investigation showed that these profiles were more distinct in case of bacteria-alga associations than for the H. ostrearia monoculture Here we present a Q-TOF LC/MS metabolomic fingerprinting approach [3]: - to investigate differential metabolites of axenic versus non axenic H. ostrearia cultures. - to focus on the specific metabolites of a bacterial surrounding associated with the activation or inhibition of the microalga growing. The Agilent suite of data processing software makes feature finding, statistical analysis, and identification easier. This enables rapid transformation of complex raw data into biologically relevant metabolite information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dietary studies of marine species constitute an important key to improve the understanding of its biology and of its role in the ecosystem. Thus, prey-predator relationships structure and determine population dynamics and the trophic network at the ecosystem scale. Among the major study sites, the marine ecosystem is submitted to natural and anthropogenic constraints. In the North-Eastern part of the Atlantic Ocean, the Bay of Biscay is a large open area surrounded South by Spain and East by France. This bay is an historic place of intense fishery activities for which the main small pelagic species targeted are the pilchard, Sardina pilchardus and the anchovy, Engraulis encrasicolus. The aim of this work is to analyze the trophic ecology of these two small pelagic fish in spring in the Bay of Biscay. To do this, a first section is devoted to their prey composed by the mesozooplanktonic compartment, through a two-fold approach: the characterization of their spatio-temporal dynamics during the decade 2003-2013 and the measurement of their energetic content in spring. For this season, it appears that all prey types are not worth energetically and that the Bay of Biscay represents a mosaic of dietary habitat. Moreover, the spring mesozooplankton community presents a strong spatial structuration, a temporal evolution marked by a major change in abundance and a control by the microphytoplankton biomass. The second section of this work is relative to a methodological approach of the trophic ecology of S. pilchardus and E. encrasicolus. Three different trophic tracers have been used: isotopic ratios of carbon and nitrogen, parasitological fauna and mercury contamination levels. To improve the use of the first of these trophic tracers, an experimental approach has been conducted with S. pilchardus to determine a trophic discrimination factor. Finally, it appears that the use of these three trophic tracers has always been permitted to highlight a temporal variability of the relative trophic ecology of these fish. However, no spatial dynamics could be identified through these three trophic tracers.