2 resultados para MOLECULAR ENVIRONMENTS

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) strains may be responsible for food-borne infections in humans. Twenty-eight STEC and 75 EPEC strains previously isolated from French shellfish-harvesting areas and their watersheds and belonging to 68 distinguishable serotypes were characterized in this study. High-throughput real-time PCR was used to search for the presence of 75 E. coli virulence-associated gene targets, and genes encoding Shiga toxin (stx) and intimin (eae) were subtyped using PCR tests and DNA sequencing, respectively. The results showed a high level of diversity between strains, with 17 unique virulence gene profiles for STEC and 56 for EPEC. Seven STEC and 15 EPEC strains were found to display a large number or a particular combination of genetic markers of virulence and the presence of stx and/or eae variants, suggesting their potential pathogenicity for humans. Among these, an O26:H11 stx1a eae-β1 strain was associated with a large number of virulence-associated genes (n = 47), including genes carried on the locus of enterocyte effacement (LEE) or other pathogenicity islands, such as OI-122, OI-71, OI-43/48, OI-50, OI-57, and the high-pathogenicity island (HPI). One O91:H21 STEC strain containing 4 stx variants (stx1a, stx2a, stx2c, and stx2d) was found to possess genes associated with pathogenicity islands OI-122, OI-43/48, and OI-15. Among EPEC strains harboring a large number of virulence genes (n, 34 to 50), eight belonged to serotype O26:H11, O103:H2, O103:H25, O145:H28, O157:H7, or O153:H2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alvinella pompejana is a polychaetous annelid that inhabits high temperature environments associated with active deep-sea hydrothermal vents along the East Pacific Rise. A unique and diverse epibiotic microflora with a prominent filamentous morphotype is found associated with the worm's dorsal integument. A previous study established the taxonomic positions of two epsilon proteobacterial phylotypes, 13B and 5A, which dominated a clone library of 16S rRNA genes amplified by PCR from the epibiotic microbial community of an A. pompejana specimen. In the present study deoxyoligonucleotide PCR primers specific for phylotypes 13B and 5A were used to demonstrate that these phylotypes are regular features of the bacterial community associated with A. pompejana. Assaying of other surfaces around colonies of A. pompejana revealed that phylotypes 13B and 5A are not restricted to A. pompejana. Phylotype 13B occurs on the exterior surfaces of other invertebrate genera and rock surfaces, and phylotype 5A occurs on a congener, Alvinella caudata. The 13B and 5A phylotypes were identified and localized on A. pompejana by in situ hybridization, demonstrating that these two phylotypes are, in fact, the prominent filamentous bacteria on the dorsal integument of A. pompejana. These findings indicate that the filamentous bacterial symbionts of A. pompejana are epsilon Proteobacteria which do not have an obligate requirement for A. pompejana.