2 resultados para MINIVERSAL DEFORMATIONS
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
New high-resolution seismic data complemented with bedrock samples allowed us to propose a revised geological map of the Bay of Seine and to better define the control by the geological substrate on the morphogenesis and evolution of the Seine River during Pleistocene times. The new data confirm previous works. The Bay of Seine can be divided into two geological parts: a Mesozoic monocline domain occupying most of the bay and a syncline domain, mostly Tertiary, in the north, at the transition with the Central English Channel area. The highlighting of Eocene synsedimentary deformations, marked by sliding blocks in the syncline domain, is one of the most original inputs of this new study in the Bay of Seine that underlines the significant role of the substrate on the formation of the Seine paleo-valley. In the monocline domain, three terraces, pre-Saalian, Saalian and Weischelian in age respectively, constitute the infill of the paleovalley, preferentially incised into the middle to upper Jurassic marl-dominated formations, and bounded to the north by the seaward extension of the Oxfordian cuesta. The three terraces are preserved only along the northern bank of the paleovalley, evidencing a NE-to-SW migration of the successive valleys during the Pleistocene. We assume this displacement results from the tectonic tilt of the Paris Basin western margin. In the North, the paleo-Seine is incised into the axis of the tertiary syncline, and comprises three fill terraces that are assumed to have similar ages than those of the terraces. The fill terrace pattern is associated to the subsiding character of this northern domain of the Bay of Seine.
Resumo:
This manuscript presents three approaches : analytical, experimental and numerical, to study the behaviour of a flexible membrane tidal energy converter. This technology, developed by the EEL Energy company, is based on periodic deformations of a pre-stressed flexible structure. Energy converters, located on each side of the device, are set into motion by the wave-like motion. In the analytical model, the membrane is represented by a linear beam model at one dimension and the flow by a 3 dimensions potential fluid. The fluid forces are evaluated by the elongated body theory. Energy is dissipated all over the length of the membrane. A 20th scale experimental prototype has been designed with micro-dampers to simulate the power take-off. Trials have allowed to validate the undulating membrane energy converter concept. A numerical model has been developed. Each element of the device is represented and the energy dissipation is done by dampers element with a damping law linear to damper velocity. Comparison of the three approaches validates their ability to represent the membrane behaviour without damping. The energy dissipation applied with the analytical model is clearly different from the two other models because of the location (where the energy is dissipated) and damping law. The two others show a similar behaviour and the same order of power take off repartition but value of power take off are underestimated by the numerical model. This three approaches have allowed to put forward key-parameters on which depend the behaviour of the membrane and the parametric study highlights the complementarity and the advantage of developing three approaches in parallel to answer industrial optimization problems. To make the link between trials in flume tank and sea trials, a 1/6th prototype has been built. To do so, the change of scale was studied. The behaviour of both prototypes is compared and differences could be explained by differences of boundary conditions and confinement effects. To evaluated membrane long-term behaviour at sea, a method of ageing accelerated by temperature and fatigue tests have been carried out on prototype materials samples submerged in sea water.