2 resultados para MICROCYSTIS AERUGINOSA

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of riverine dissolved organic matter by the heterotrophic bacteria associated with a culture of the cyanobacterium Microcystis aeruginosa and release of simple nitrogen compounds were studied in an experimental series. Bacteria reduced the bulk of dissolved organic nitrogen (DON) by half, but when associated with M. aeruginosa, DON was excreted and its concentration rose by 13%. During the stationary growth phase bacteria released ammonium, doubling the concentration of ammonia as well as of nitrates. Bacteria associated with M. aeruginosa consumed riverine DON and joined the ammonification and nitrification process, supplying cyanobacteria with simple nitrogen compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In May, June and July 1996, samples wcre collected along one transect greatly influenced by river discharge (eastern side of the gulf), along one transect slightly influence by river discharge (western side), at one station Iocated in the mouth of the main river (River Daugava), at one station located in the center of the Gulf and at several nearshore locations of the western side. Ratios of rnolecular concentrations of in situ dissolved ioorganic nitrogen, phosphorus and silicon, as weIl as enrichment bioassays were llsed to dctcrrnine which nutrient (s) lirnited the potential biomass of phytoplankton. Both comparison of (NO.d-N02+NJ.L): P04 (DIN: DIP) values with Redfic1d's ratio and bioassay inspection led to the sarne conclusions. Phosphorus was clearly the nutrient most limiting for the potcntial biornass of test species in nitrogen- rich waters, which occurred in mid spring, in the upper layer of the southern-eastern part of the Gulf which is greatly influenced by river discharge. In late spring, with the decrease of the total DIN reserve, nitrogen and phosphorus showed an equallimiting role. In deeper layers of this area and out of the river plume (western side and central part of the gulf), nitrogen was the limiting nutrient. In summer, whcn river discharge was the lowest, a11 DIN concentrations but one ranged between 1.6 and 2.6 µM, and the whole area was nitrogen-limited for both the cyanobacterial and the algal test strains. In 74% of the samples for which nitrogen was the limiting nutrient, phosphorus was recorded to be the second potentially limiting nutrient. In contrast, silicon never appeared as limiting the growth potential of either Microcystis aeruginosa or Phaeodactylum tricornutum; phosphorus was the limiting nutrient when DIN: Si03 values were >1 (in May), but DIN: Si03 was <1 when nitrogen was limiting (June and July). The authors conclude that the recently reported decrease of silicon loading in coastal waters and its subsequent enhanced importance in pushing the outcome of species competition towards harmful species may not yet be the most important factor for the Gulf of Riga. Iron appeared for 12% of the tests in the list of nutrients limiting the potential biomass. Tentative results also indicated that a significant fraction of the nitrogen (~,4 µg-atom N 1(-1) taken up by Microcystis aeruginosa may have been in the form of dissolved organic nitrogen (DON). It is thus also suggested tentatively that more attention be paid to these nitrients during further research in the Gulf of Riga.