3 resultados para METRO Regional Professional Leadership Network (RPLN)
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
The coastal zone of the Nord – Pas de Calais / Picardie showed dysfonctioning patterns of the ecosystem considered to be link to human activities along shores. These results in regular massive development of species, such as the phytoplanktonic seaweed, Phaeocystis sp. which life cycle was partly linked to nutrients availability and consequently to anthropogenic inputs. As part of the evaluation of the influence of continental inputs on the marine environment (nitrates, phosphates,…) and on potential eutrophication processes, of the estimation of the efficiency of the sewage treatments plants in the possible elimination of dumpings and in order to establish a long-term survey to follow up the change in coastal waters quality, the regional nutrients monitoring network was implemented by Ifremer in collaboration with the Agence de l'Eau Artois-Picardie in 1992 in order to complete the REPHY (Phytoplankton and Phycotoxins) monitoring programme. This study reports the main results for the year 2015 in terms of temporal change of the main physico-chemical and biological parameters characteristic of water masses sampled along three transects offshore Dunkerque, Boulogne-sur-Mer and the Bay of Somme.
Resumo:
This document presents catalogue techniques used at network GDAC level to facilitate the discovery of platforms and data files. Some AtlantOS networks are organized as DAC-GDACs that continuously update a catalogue of metadata on observation datasets and platforms: • A DAC is a Data Assembly Centre operating at national or regional scale. It manages data and metadata for its area with a direct link to Scientifics and Operators. The DAC pushes observations to the network GDAC. • A GDAC is a Global Data Assembly Centre. It is designed for a global observation network such as Argo, OceanSITES, DBCP, EGO, Gosud, etc… The GDAC aggregates data and metadata of an observation network, in real-time and delayed mode, provided by DACs.
Resumo:
Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010–2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.