4 resultados para Longitudinal Growth Modelling

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blue whiting Micromesistius poutassou mean total length at age in the north-east Atlantic Ocean was found to vary by around ±6% during the period 2004–2011 and mean mass at age by ±22% during the years 1981–2013. Linear modelling provided strong evidence that these phenotypic growth variations can be explained by trophic conditions, mainly negative density dependence and also food availability, and a negative long-term temperature effect on asymptotic siz

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim The spread of non-indigenous species in marine ecosystems world-wide is one of today's most serious environmental concerns. Using mechanistic modelling, we investigated how global change relates to the invasion of European coasts by a non-native marine invertebrate, the Pacific oyster Crassostrea gigas. Location Bourgneuf Bay on the French Atlantic coast was considered as the northern boundary of C. gigas expansion at the time of its introduction to Europe in the 1970s. From this latitudinal reference, variations in the spatial distribution of the C. gigas reproductive niche were analysed along the north-western European coast from Gibraltar to Norway. Methods The effects of environmental variations on C. gigas physiology and phenology were studied using a bioenergetics model based on Dynamic Energy Budget theory. The model was forced with environmental time series including in situ phytoplankton data, and satellite data of sea surface temperature and suspended particulate matter concentration. Results Simulation outputs were successfully validated against in situ oyster growth data. In Bourgneuf Bay, the rise in seawater temperature and phytoplankton concentration has increased C. gigas reproductive effort and led to precocious spawning periods since the 1960s. At the European scale, seawater temperature increase caused a drastic northward shift (1400 km within 30 years) in the C. gigas reproductive niche and optimal thermal conditions for early life stage development. Main conclusions We demonstrated that the poleward expansion of the invasive species C. gigas is related to global warming and increase in phytoplankton abundance. The combination of mechanistic bioenergetics modelling with in situ and satellite environmental data is a valuable framework for ecosystem studies. It offers a generic approach to analyse historical geographical shifts and to predict the biogeographical changes expected to occur in a climate-changing world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general framework for an ecological model of the English Channel was described in the first of this pair of papers. In this study, it was used to investigate the sensitivity of the model to various factors: model structure, parameter values, boundary conditions and forcing variables. These sensitivity analyses show how important quota formulation for phytoplankton growth is, particularly for growth of dinoflagellates. They also stress the major influence of variables and parameters related to nitrogen. The role played by rivers and particularly the river Seine was investigated. Their influence on global English Channel phytoplanktonic production seems to be relatively low, even though nutrient inputs determine the intensity of blooms in the Bay of Seine. The geographical position of the river Seine's estuary makes it important in fluxes through the Straits of Dover. Finally, the multi-annual study highlights the general stability of the English Channel ecosystem. These global considerations are discussed and further improvements to the model are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Operational approaches have been more and more widely developed and used for providing marine data and information services for different socio-economic sectors of the Blue Growth and to advance knowledge about the marine environment. The objective of operational oceanographic research is to develop and improve the efficiency, timeliness, robustness and product quality of this approach. This white paper aims to address key scientific challenges and research priorities for the development of operational oceanography in Europe for the next 5-10 years. Knowledge gaps and deficiencies are identified in relation to common scientific challenges in four EuroGOOS knowledge areas: European Ocean Observations, Modelling and Forecasting Technology, Coastal Operational Oceanography and Operational Ecology. The areas "European Ocean Observations" and "Modelling and Forecasting Technology" focus on the further advancement of the basic instruments and capacities for European operational oceanography, while "Coastal Operational Oceanography" and "Operational Ecology" aim at developing new operational approaches for the corresponding knowledge areas.