2 resultados para License system

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observing system experiments (OSEs) are carried out over a 1-year period to quantify the impact of Argo observations on the Mercator Ocean 0.25° global ocean analysis and forecasting system. The reference simulation assimilates sea surface temperature (SST), SSALTO/DUACS (Segment Sol multi-missions dALTimetrie, d'orbitographie et de localisation précise/Data unification and Altimeter combination system) altimeter data and Argo and other in situ observations from the Coriolis data center. Two other simulations are carried out where all Argo and half of the Argo data are withheld. Assimilating Argo observations has a significant impact on analyzed and forecast temperature and salinity fields at different depths. Without Argo data assimilation, large errors occur in analyzed fields as estimated from the differences when compared with in situ observations. For example, in the 0–300 m layer RMS (root mean square) differences between analyzed fields and observations reach 0.25 psu and 1.25 °C in the western boundary currents and 0.1 psu and 0.75 °C in the open ocean. The impact of the Argo data in reducing observation–model forecast differences is also significant from the surface down to a depth of 2000 m. Differences between in situ observations and forecast fields are thus reduced by 20 % in the upper layers and by up to 40 % at a depth of 2000 m when Argo data are assimilated. At depth, the most impacted regions in the global ocean are the Mediterranean outflow, the Gulf Stream region and the Labrador Sea. A significant degradation can be observed when only half of the data are assimilated. Therefore, Argo observations matter to constrain the model solution, even for an eddy-permitting model configuration. The impact of the Argo floats' data assimilation on other model variables is briefly assessed: the improvement of the fit to Argo profiles do not lead globally to unphysical corrections on the sea surface temperature and sea surface height. The main conclusion is that the performance of the Mercator Ocean 0.25° global data assimilation system is heavily dependent on the availability of Argo data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Biofloc technology (BFT), a rearing method with little or no water exchange, is gaining popularity in aquaculture. In the water column, such systems develop conglomerates of microbes, algae and protozoa, together with detritus and dead organic particles. The intensive microbial community presents in these systems can be used as a pond water quality treatment system, and the microbial protein can serve as a feed additive. The current problem with BFT is the difficulty of controlling its bacterial community composition for both optimal water quality and optimal shrimp health. The main objective of the present study was to investigate microbial diversity of samples obtained from different culture environments (Biofloc technology and clear seawater) as well as from the intestines of shrimp reared in both environments through high-throughput sequencing technology. Results Analyses of the bacterial community identified in water from BFT and “clear seawater” (CW) systems (control) containing the shrimp Litopenaeus stylirostris revealed large differences in the frequency distribution of operational taxonomic units (OTUs). Four out of the five most dominant bacterial communities were different in both culture methods. Bacteria found in great abundance in BFT have two principal characteristics: the need for an organic substrate or nitrogen sources to grow and the capacity to attach to surfaces and co-aggregate. A correlation was found between bacteria groups and physicochemical and biological parameters measured in rearing tanks. Moreover, rearing-water bacterial communities influenced the microbiota of shrimp. Indeed, the biofloc environment modified the shrimp intestine microbiota, as the low level (27 %) of similarity between intestinal bacterial communities from the two treatments. Conclusion This study provides the first information describing the complex biofloc microbial community, which can help to understand the environment-microbiota-host relationship in this rearing system.