2 resultados para LAVAS

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exploration of the Foundation Volcanic Chain (33 degrees S-131 degrees W; 37 degrees S-111 degrees W) revealed the existence of different magmatic provinces with relation to their geological settings. (1) The Pacific-Antarctic Ridge (PAR) is made up of several en echelon segments where both glassy midocean ridge basalts (MORBs) with low incompatible elements (K2O<200 ppm, Zr<120 ppm and Ce <20 ppm) as well as andesites and dacites have erupted, (2) Oblique Ridges located up to 300 lan from the PAR axis are topped with seamounts made up essentially of transitional (T) and enriched (E) MORBs with intermediate incompatible elements (K2O=0.11-0.40 %, Zr=70-140 ppm and Ce=15-30 ppm), (3) the Foundation Seamounts (FS) consisting essentially of isolated volcanoes which have erupted alkalic lavas (alkali basalt, trachybasalt and trachyandesite) with high incompatible elements (K2O (0.50-1.1 %, Zr (>150 ppm) and Ce (>48 ppm)) at about 306-1300 km from the PAR axis, (4) The Old Pacific Seamounts built on a crust older than 23 m. y. located west of longitude 124 degrees W (> 1300 km from the PAR axis) consist of T and EMORB. On the PAR axis, extensive crystal fractionation (>65%) produced the silicic lavas. On the basis of Pacific plate reconstruction using a half spreading rate of about 50 mm/yr and integrating the observed compositional changes with respect to the structural settings, it is inferred that the last volcanic events giving rise to the FS took place at about 110 km from the PAR axis about 5 m. y. ago. The Oblique Ridges built between 5 m. y. and <1 m. y. are believed to represent ancient leaky transforms and/or large discontinuities between accreting ridge segments filled by volcanic cones during the interaction (mixing) of the enriched plume components of the FS with PAR depleted (MORB type) magmatism. The Old Pacific Seamounts built on ancient crust (>23 m. y.) with MORB volcanics comparable to those of the the Oblique Ridge-PAR provinces, could also have been formed by an interaction between the Foundation Seamount (dredge site 28) hotspot magmatism and that of an ancient accreting ridge magmatism precursor of the PAR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

VESPA was a successful 25 day research cruise on R/V l'Atalante that took place in May and June 2015. The main aim was to acquire new rock samples from extinct volcanoes on the Norfolk, Loyalty and Three Kings ridges, which connect New Caledonia and New Zealand. This was in order to test various hypotheses of Late Cretaceous-Miocene SW Pacific tectonic development relating to (i) nature and duration of magmatism on the ridges; (ii) timing of subduction initiation east of northern Zealandia; (iii) postulated subduction polarity changes. A total of 3400 km of 'sismique rapide' shallow reflection seismic data were acquired and processed onboard. The seismic lines provided a very useful structural-stratigraphic framework for the rock dredging. Combined with multibeam bathymetry data they allowed intelligent targeting of acoustic basement (lavas) and specific seismic reflectors (sedimentary strata) on rocky slopes and fault scarps. Different stratigraphic levels of the Loyalty and Three Kings Ridge volcanic piles were sampled by dredging at different water depths on the Cook Fracture Zone and Cagou Trough fault scarps. By the end of the cruise, 43 dredges had been attempted and 36 of them yielded igneous or sedimentary rocks potentially useful to the VESPA project. Onboard use of a portable X-ray fluorescence unit confirmed the presence of intraplate (but no arc) volcanoes on the Norfolk Ridge and presence of arc, intraplate and shoshonitic volcanoes on the Loyalty and Three Kings Ridges. A total of 770 kg of rock was retained for post-cruise analysis in New Caledonia, France and New Zealand. Future work will include micropaleontological dating of sedimentary rocks, U-Pb and Ar-Ar isotopic dating of igneous rocks, and whole rock geochemical and tracer isotope analyses. We are optimistic that many of the initial research hypotheses will be able to be tested.