2 resultados para LARGE-AREA
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
This article reports the results of a survey of the pearl oyster industry in French Polynesia territory. Its purpose is to examine the perceptions of the priorities for the development of this industry towards sustainable development. These perceptions were apprehended by a survey of pearl oyster farmers and other stakeholders of the sector (management authorities, scientists). After describing the methodological protocol of these investigations, it comes to confront the priorities chosen by professionals (i.e. pearl farmers) concerning sustainable development, with the perceptions of others stakeholders in the sector. Secondly it comes to build a typology of the priorities of pearl farmers concerning sustainable development. This analysis enables the assessment of the degree of convergence within the sector, which is the base material for defining a shared action plan at the territory scale. This is the first study compiling data of surveys of various professionals and stakeholders of the pearl farming industry in such a large area in French Polynesia.
Resumo:
The Arctic continental margin contains large amounts of methane in the form of methane hydrates. The west Svalbard continental slope is an area where active methane seeps have been reported near the landward limit of the hydrate stability zone. The presence of bottom simulating reflectors (BSR) on seismic reflection data in water depths greater than 600 m suggests the presence of free gas beneath gas hydrates in the area. Resistivity obtained from marine controlled source electromagnetic (CSEM) data provides a useful complement to seismic methods for detecting shallow hydrate and gas as they are more resistive than surrounding water saturated sediments. We acquired two CSEM lines in the west Svalbard continental slope, extending from the edge of the continental shelf (250 m water depth) to water depths of around 800 m. High resistivities (5-12 Ωm) observed above the BSR support the presence of gas hydrate in water depths greater than 600 m. High resistivities (3-4 Ωm) at 390-600 m water depth also suggest possible hydrate occurrence within the gas hydrate stability zone (GHSZ) of the continental slope. In addition, high resistivities (4-8 Ωm) landward of the GHSZ are coincident with high-amplitude reflectors and low velocities reported in seismic data that indicate the likely presence of free gas. Pore space saturation estimates using a connectivity equation suggest 20-50% hydrate within the lower slope sediments and less than 12% within the upper slope sediments. A free gas zone beneath the GHSZ (10-20% gas saturation) is connected to the high free gas saturated (10-45%) area at the edge of the continental shelf, where most of the seeps are observed. This evidence supports the presence of lateral free gas migration beneath the GHSZ towards the continental shelf.