2 resultados para Islands of the Adriatic
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
In September 2015, the Working Group on Biological Parameters (WGBIOP) recommended an otolith exchange for Mullus surmuletus and Mullus barbatus in 2016 (Otolith Exchanges proposals for 2016/2017; ICES, 2015). Kélig Mahe (IFREMER, France) was decided to be the responsible to organise this otolith exchange. Two otolith exchanges (2008, 2011), and two age reading workshops (ICES, 2009; 2012), have been taken place until now (Mahé et al., 2012). A total of 13 readers from 5 countries (France, Spain, Italy, Cyprus and Greece) participated at the exchange of 2016. The otoliths of 465 individuals (345 M. barbatus & 120 M. surmuletus), sampled from 2011 to 2014 in the Mediterranean Sea (Central Adriatic Sea, Cyprus, Levantine Spain coasts, Balearic Islands) were used for this exchange. For both Mullus species, the precision values were very low, the PA ranged between 56 and 67% the CV ranged from 32 to 64% and the APE ranged from 1.9 to 3.6%. The results by area and species showed the same trend with the first age groups presenting the higher CV values and in some cases lower PA values. These results could be explained by the position of the first growth increment and the two different approaches of reading interpretation used by the readers (ICES, 2012).
Resumo:
The time-mean Argo float displacements and the World Ocean Atlas 2009 temperature–salinity climatology are used to obtain the total, top to bottom, mass transports. Outside of an equatorial band, the total transports are the sum of the vertical integrals of geostrophic- and wind-driven Ekman currents. However, these transports are generally divergent, and to obtain a mass conserving circulation, a Poisson equation is solved for the streamfunction with Dirichlet boundary conditions at solid boundaries. The value of the streamfunction on islands is also part of the unknowns. This study presents and discusses an energetic circulation in three basins: the North Atlantic, the North Pacific, and the Southern Ocean. This global method leads to new estimations of the time-mean western Eulerian boundary current transports maxima of 97 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) at 60°W for the Gulf Stream, 84 Sv at 157°E for the Kuroshio, 80 Sv for the Agulhas Current between 32° and 36°S, and finally 175 Sv for the Antarctic Circumpolar Current at Drake Passage. Although the large-scale structure and boundary of the interior gyres is well predicted by the Sverdrup relation, the transports derived from the wind stress curl are lower than the observed transports in the interior by roughly a factor of 2, suggesting an important contribution of the bottom torques. With additional Argo displacement data, the errors caused by the presence of remaining transient terms at the 1000-db reference level will continue to decrease, allowing this method to produce increasingly accurate results in the future.