2 resultados para Interactive Video Instruction: A Training Tool Whose Time Has Come

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the construction of operational oceanography systems, the need for real-time has become more and more important. A lot of work had been done in the past, within National Data Centres (NODC) and International Oceanographic Data and Information Exchange (IODE) to standardise delayed mode quality control procedures. Concerning such quality control procedures applicable in real-time (within hours to a maximum of a week from acquisition), which means automatically, some recommendations were set up for physical parameters but mainly within projects without consolidation with other initiatives. During the past ten years the EuroGOOS community has been working on such procedures within international programs such as Argo, OceanSites or GOSUD, or within EC projects such as Mersea, MFSTEP, FerryBox, ECOOP, and MyOcean. In collaboration with the FP7 SeaDataNet project that is standardizing the delayed mode quality control procedures in NODCs, and MyOcean GMES FP7 project that is standardizing near real time quality control procedures for operational oceanography purposes, the DATA-MEQ working group decided to put together this document to summarize the recommendations for near real-time QC procedures that they judged mature enough to be advertised and recommended to EuroGOOS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold is one of the most widely used metals for building up plasmonic devices. Although slightly less efficient than silver for producing sharp resonance, its chemical properties make it one of the best choices for designing sensors. Sticking gold on a silicate glass substrate requires an adhesion layer, whose effect has to be taken into account. Traditionally, metals (Cr or Ti) or dielectric materials (TiO2 or Cr2O3 ) are deposited between the glass and the nanoparticle. Recently, indium tin oxide and (3-mercaptopropyl)trimethoxysilane (MPTMS) were used as a new adhesion layer. The aim of this work is to compare these six adhesion layers for surface- enhanced Raman scattering sensors by numerical modeling. The near-field and the far-field optical responses of gold nanocylinders on the different adhesion layers are then calculated. It is shown that MPTMS leads to the highest field enhancement, slightly larger than other dielectric materials. We attributed this effect to the lower refractive index of MPTMS compared with the others.