2 resultados para Indian monsoon

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mixed-layer salinity (MLS) budget in the tropical Indian Ocean is estimated from a combination of satellite products and in situ observations over the 2004-2012 period, to investigate the mechanisms controlling the seasonal MLS variability. In contrast with previous studies in the tropical Indian Ocean, our results reveal that the coverage, resolution, and quality of available observations are now sufficient to approach a closed monthly climatology seasonal salt budget. In the South-central Arabian Sea and South-western Tropical Indian Ocean (SCAS and STIO, respectively), where seasonal variability of the MLS is pronounced, the monthly MLS tendency terms are well captured by the diagnostic. In the SCAS region, in agreement with previous results, the seasonal cycle of the MLS is mainly due to meridional advection driven by the monsoon winds. In the STIO, contrasting previous results indicating the control of the meridional advection over the seasonal MLS budget, our results reveal the leading role of the freshwater flux due to precipitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we use an observational dataset built from Argo in situ profiles to describe the main large-scale patterns of intraseasonal mixed layer depth (MLD) variations in the Indian Ocean. An eddy permitting (0.25A degrees) regional ocean model that generally agrees well with those observed estimates is then used to investigate the mechanisms that drive MLD intraseasonal variations and to assess their potential impact on the related SST response. During summer, intraseasonal MLD variations in the Bay of Bengal and eastern equatorial Indian Ocean primarily respond to active/break convective phases of the summer monsoon. In the southern Arabian Sea, summer MLD variations are largely driven by seemingly-independent intraseasonal fluctuations of the Findlater jet intensity. During winter, the Madden-Julian Oscillation drives most of the intraseasonal MLD variability in the eastern equatorial Indian Ocean. Large winter MLD signals in northern Arabian Sea can, on the other hand, be related to advection of continental temperature anomalies from the northern end of the basin. In all the aforementioned regions, peak-to-peak MLD variations usually reach 10 m, but can exceed 20 m for the largest events. Buoyancy flux and wind stirring contribute to intraseasonal MLD fluctuations in roughly equal proportions, except for the Northern Arabian Sea in winter, where buoyancy fluxes dominate. A simple slab ocean analysis finally suggests that the impact of these MLD fluctuations on intraseasonal sea surface temperature variability is probably rather weak, because of the compensating effects of thermal capacity and sunlight penetration: a thin mixed-layer is more efficiently warmed at the surface by heat fluxes but loses more solar flux through its lower base.