3 resultados para In situ chemical oxidation

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the temporal dynamics of iron concentrations and temperature on a faunal assemblage at the Lucky Strike vent was performed using the Tempo ecological module at the EMSO-Azores deep-sea observatory. The CHEMINI in situ analyzer was implemented on this structure to determine reactive iron concentrations in unfiltered seawater samples along with a temperature probe. Stability tests were performed on the CHEMINI analyzer before deployment (optical module, hyperbaric tests, and deep-sea calibration) for long-term in situ analysis of reactive iron (six months, 2013–2014) at the Tour Eiffel active edifice. Recorded daily, the in situ standard (25 \mu mol.L {}^{-1} ) showed excellent reproducibility (1.07%, n=522 ), confirming satisfactory analytical performance of the CHEMINI analyzer and thus validating the iron concentrations measured by the instrument. Furthermore, the analyzer proved to be reliable and robust over time. The averaged reactive iron concentration for the six-month period remained low ([Fe] =text{7.12}\pm text{2.11} \mu mol.L {}^{-1} , n=519 ), but showed some noticeable variations with temperature. Reactive iron concentrations and temperature were significantly correlated emphasizing reactive iron stabilization over the time of deployment. Period spectra indicated strong tidal influence and relevant frequencies of four to five days for both variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron and Li are light, incompatible elements that preferentially partition into the liquid phase, whether melt or aqueous fluid, and thus are useful for tracking fluid-related processes in rocks. Most of the Li isotopic data presently available on subduction-related rocks are from whole-rock analyses; and the B isotopic analyses of subduction material have been carried out either on whole-rocks or in-situ on an accessory phase, such as tourmaline. The new method presented here couples an ESI New Wave UP-193-FX ArF* (193 nm) excimer laser-ablation microscope with a Neptune Plus (Thermo Scientific) MC-ICP-MS aiming to measure both Li and B isotopes in situ with good spatial resolution (metamorphic minerals are commonly chemically zoned, and whole-rock analyses lose this detail). The data thus obtained are compared with SIMS analyses on the same mineral samples for B, and with MC-ICP-MS analyses on whole-rock or mineral separates from the same sample for Li. Additionally, data acquired on tourmaline standards were compared to SIMS values. The results show that for B concentrations above 5 μg/g, the data obtained by LA-MC-ICP-MS and by SIMS are identical within error, for mica (phengitic muscovite), pyroxene (jadeite), serpentine (antigorite), and tourmaline. For Li concentrations above 10 μg/g, the data obtained by LA-MC-ICP-MS and by MC-ICP-MS are also identical, within error, for mica (phengitic muscovite), and pyroxene (jadeite). However, analyses of tourmaline standards have shown significant differences with reference values, so LA-MC-ICP-MS does not yet appear to be an appropriate method to analyze Li isotopes in tourmalines. Thus, LA-MC-ICP-MS is a suitable method to measure Li and B isotopes with good spatial resolution in major rock-forming silicates from subduction-related rocks where concentrations exceed 10 μg/g and 5 μg/g, respectively, with an error on individual measurements equal to or less than previously used methods, but obtainable in a significantly shorter amount of time. The external reproducibility is ± 2.88 to 3.31 ‰ for B and ± 1.50 to 1.75 for Li, which is lower than or equal to the variations encountered within a given chemically zoned sample (up to 10 ‰ of variation within a given natural sample).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to assess the impact of the filtration method (in situ vs. ex situ) on the dissolved/particulate partitioning of 12 elements in hydrothermal samples collected from the Lucky Strike vent field (Mid-Atlantic Ridge; MAR). To do so, dissolved ( <0.45 mu m) and particulate Mg, Li, Mn, U, V, As, Ba, Fe, Zn, Cd, Pb and Cu were measured using different techniques (HR-ICP-MS, ICP-AES and CCSA). Using in situ filtration as a baseline, we showed that ex situ filtration (on-board and on shore after freezing) resulted in an underestimation of the dissolved pool, which was counterbalanced by an overestimation of the particulate pool for almost all the elements studied. We also showed that on-board filtration was acceptable for the assessment of dissolved and particulate Mn, Mg, Li and U for which the measurement bias for the dissolved fraction did not exceed 3%. However, in situ filtration appeared necessary for the accurate assessment of the dissolved and particulate concentrations of V, As, Fe, Zn, Ba, Cd, Pb and Cu. In the case of Fe, on-board filtration underestimated the dissolved pool by up to 96%. Laboratory filtration (after freezing) resulted in a large bias in the dissolved and particulate concentrations, unambiguously discounting this filtration method for deep-sea chemical speciation studies. We discuss our results in light of the precipitation processes that can potentially affect the accuracy of ex situ filtration methods.