4 resultados para Impacts of a warming Arctic

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current understanding of Arctic ecosystems is deeply rooted in the classical view of a bottom-up controlled system with strong physical forcing and seasonality in primary-production regimes. Consequently, the Arctic polar night is commonly disregarded as a time of year when biological activities are reduced to a minimum due to a reduced food supply. Here, based upon a multidisciplinary ecosystem-scale study from the polar night at 79 degrees N, we present an entirely different view. Instead of an ecosystem that has entered a resting state, we document a system with high activity levels and biological interactions across most trophic levels. In some habitats, biological diversity and presence of juvenile stages were elevated in winter months compared to the more productive and sunlit periods. Ultimately, our results suggest a different perspective regarding ecosystem function that will be of importance for future environmental management and decision making, especially at a time when Arctic regions are experiencing accelerated environmental change [1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The explosion of the Deepwater Horizon (DWH) oil platform resulted in large amounts of crude oil and dispersant Corexit 9500A® released into the Gulf of Mexico and coincided with the spawning season of the oyster, Crassostrea virginica. The effects of exposing gametes and embryos of C. virginica to dispersant alone (Corexit), mechanically (HEWAF) and chemically dispersed (CEWAF) DWH oil were evaluated. Fertilization success and the morphological development, growth, and survival of larvae were assessed. Gamete exposure reduced fertilization (HEWAF: EC201 h = 1650 μg tPAH50 L− 1; CEWAF: EC201 h = 19.4 μg tPAH50 L− 1; Corexit: EC201 h = 6.9 mg L− 1). CEWAF and Corexit showed a similar toxicity on early life stages at equivalent nominal concentrations. Oysters exposed from gametes to CEWAF and Corexit experienced more deleterious effects than oysters exposed from embryos. Results suggest the presence of oil and dispersant during oyster spawning season may interfere with larval development and subsequent recruitment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical factors (inorganic nitrogen, phosphate, silicic acid) that potentially or actually control primary production were determined for the Bay of Brest, France, a macrotidal ecosystem submitted to high-nitrate-loaded freshwater inputs (winter nitrate freshwater concentrations >700 mu M, Si:N molar ratio as low as 0.2, i.e. among the lowest ever published). Intensive data collection and observations were carried out from February 1993 to March 1994 to determine the variations of physical [salinity, temperature, photosynthetically active radiation (PAR), freshwater discharges] and chemical (oxygen and nutrients) parameters and their impacts on the phytoplankton cycle (fluorescence, pigments, primary production). With insufficient PAR the winter stocks of nutrients were almost nonutilized and the nitrate excess was exported to the adjacent ocean, due to rapid tidal exchange. By early April, a diatom-dominated spring bloom developed (chlorophyll a maximum = 7.7 mu g l(-1); primary production maximum = 2.34 g C m(-2) d(-1)) under high initial nutrient concentrations. Silicic acid was rapidly exhausted over the whole water column; it is inferred to be the primary limiting factor responsible for the collapse of the spring bloom by mid-May. Successive phytoplankton developments characterized the period of secondary blooms during summer and fall (successive surface chlorophyll a maxima = 3.5, 1.6, 1.8 and 1.0 mu g l(-1); primary production = 1.24, 1.18 and 0.35 g C m(-2) d(-1)). Those secondary blooms developed under lower nutrient concentrations, mostly originating from nutrient recycling. Until August, Si and P most likely limited primary production, whereas the last stage of the productive period in September seemed to be N limited instead, this being a period of total nitrate depletion in almost the whole water column. Si limitation of spring blooms has become a common feature in coastal ecosystems that receive freshwater inputs with Si:N molar ratios <1. The peculiarity of Si Limitation in the Bay of Brest is its extension through the summer period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodiversity offsets are increasingly advocated as a flexible approach to managing the ecological costs of economic development. Arguably, however, this remains an area where policy-making has run ahead of science. A growing number of studies identify limitations of offsets in achieving ecologically sustainable outcomes, pointing to ethical and implementation issues that may undermine their effectiveness. We develop a novel system dynamic modelling framework to analyze the no net loss objective of development and biodiversity offsets. The modelling framework considers a marine-based example, where resource abundance depends on a habitat that is affected by a sequence of development projects, and biodiversity offsets are understood as habitat restoration actions. The model is used to explore the implications of four alternative offset management strategies for a regulator, which differ in how net loss is measured, and whether and how the cumulative impacts of development are considered. Our results confirm that, when it comes to offsets as a conservation tool, the devil lies in the details. Approaches to determining the magnitude of offsets required, as well as their timing and allocation among multiple developers, can result in potentially complex and undesired sets of economic incentives, with direct impacts on the ability to meet the overall objective of ecologically sustainable development. The approach and insights are of direct interest to conservation policy design in a broad range of marine and coastal contexts.