2 resultados para Immunological anomalies
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Although slow spreading ridges characterized by a deep axial valley and fast spreading ridges characterized by an axial bathymetric high have been extensively studied, the transition between these two modes of axial morphology is not well understood. We conducted a geophysical-survey of the intermediate spreading rate Southeast Indian Ridge between 88 degrees E and 118 degrees E, a 2300-km-long section of the ridge located between the Amsterdam hot spot and the Australian-Antarctic Discordance where satellite gravity data suggest that the Southeast Indian Ridge (SEIR) undergoes a change from an axial high in the west to an axial valley in the east. A basic change in axial morphology is found near 103 degrees 30'E in the shipboard data; the axis to the west is marked by an axial high, while a valley is found to the east. Although a well-developed axial high, characteristic of the East Pacific Rise (EPR), is occasionally present, the more common observation is a rifted high that is lower and pervasively faulted, sometimes with significant (> 50 m throw) faults within a kilometer of the axis. A shallow axial valley (< 700 m deep) is observed from 104 degrees E to 114 degrees E with a sudden change to a deep (>1200 m deep) valley across a transform at 114 degrees E. The changes in axial morphology along the SEIR are accompanied by a 500 m increase in near-axis ridge flank depth from 2800 m near 88 degrees E to 3300 m near 114 degrees E and by a 50 mGal increase in the regional level of mantle Bouguer gravity anomalies over the same distance, The regional changes in depth and mantle Bouguer anomaly (MBA) gravity can be both explained by a 1.7-2.4 km change in crustal thickness or by a mantle temperature change of 50 degrees C-90 degrees C. In reality, melt supply (crustal thickness) and mantle temperature are linked, so that changes in both may occur simultaneously and these estimates serve as upper bounds. The along-axis MBA gradient is not uniform. Pronounced steps in the regional level of the MBA gravity occur at 103 degrees 30'E-104 degrees E and at 114 degrees E-116 degrees E and correspond to the changes in the nature of the axial morphology and in the amplitude of abyssal hill morphology suggesting that the different forms of morphology do not grade into each other but rather represent distinctly different forms of axial (s)tructure and tectonics with a sharp transition between them. The change from an axial high to an axial valley requires a threshold effect in which the strength of the lithosphere changes quickly. The presence or absence of a quasi-steady state magma chamber may provide such a mechanism. The different forms of axial morphology are also associated with different intrasegment MBA gravity patterns. Segments with an axial high have an MBA low located at a depth minimum near the center of the segment, At EPR-like segments, the MBA low is about 10 mGal with along-axis gradients of 0.15-0.25 mGal/km, similar to those observed at the EPR, Rifted highs have a shallower low and lower gradients suggesting an attenuated composite magma chamber and a reduced and perhaps episodic melt supply. Segments with a shallow axial valley have very flat along-axis MBA profiles with little correspondence between axial depth and axial MBA gravity.
Resumo:
The deep seismic reflection profile Western Approaches Margin (WAM) cuts across the Goban Spur continental margin, located southwest of Ireland. This non-volcanic margin is characterized by a few tilted blocks parallel to the margin. A volcanic sill has been emplaced on the westernmost tilted block. The shape of the eastern part of this sill is known from seismic data, but neither seismic nor gravity data allow a precise determination of the extent and shape of the volcanic body at depth. Forward modelling and inversion of magnetic data constrain the shape of this volcanic sill and the location of the ocean-continent transition. The volcanic body thickens towards the ocean, and seems to be in direct contact with the oceanic crust. In the contact zone, the volcanic body and the oceanic magnetic layer display approximately the same thickness. The oceanic magnetic layer is anomalously thick immediately west of the volcanic body, and gradually thins to reach more typical values 40 km further to the west. The volcanic sill would therefore represent the very first formation of oceanic crust, just before or at the continental break-up. The ocean-continent transition is limited to a zone 15 km wide. The continental magnetic layer seems to thin gradually oceanwards, as does the continental crust, but no simple relation is observed between their respective thinnings.